Publications by authors named "Han Dong Li"

Background: Results from our recent study demonstrate that sphingosine-1-phosphate receptor 1 (S1PR1) modulation improves microvascular hemodynamics after cerebrovascular thrombosis. This study was to determine the microvascular hemodynamic effects of a sub-thrombolytic dose of tPA combined with a selective S1PR1 modulator ozanimod in a mouse model of cerebrovascular thrombosis.

Methods: Microvascular circulation in mice was monitored by two-photon microscopy.

View Article and Find Full Text PDF

Neuromyelitis optica spectrum disorder (NMOSD) is a severe central nervous system (CNS) autoimmune disease that primarily damages the optic nerves and spinal cord. Group 2 innate lymphoid cells (ILC2) are potent producers of type 2 cytokines that orchestrate immune and inflammatory responses. However, the role of ILC2 in CNS autoimmune diseases remains unknown.

View Article and Find Full Text PDF

Background: Cerebral ischemia is a leading cause of death and disability with limited treatment options. Although inflammatory and immune responses participate in ischemic brain injury, the molecular regulators of neuroinflammation after ischemia remain to be defined. Translocator protein 18 kDa (TSPO) mainly localized to the mitochondrial outer membrane is predominantly expressed in glia within the central nervous system during inflammatory conditions.

View Article and Find Full Text PDF

Traditional Chinese Medicine (TCM) has long perceived environment as an integral part of the development of body constitution, which is a personal state of health closely related to disease presence. Despite of the ever-growing studies on the clinical effectiveness of TCM and the scientific linking between body constitution and diseases, the geographical influence on body constitution has yet remained an unexplored territory. This study sought to investigate whether the neighbourhood environment is relevant to the composition of body type of a population through statistical multilevel and Geographic Information Systems modelling.

View Article and Find Full Text PDF

We here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp(2) bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp(2)-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells in the symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable.

View Article and Find Full Text PDF

Molecular hydrocarbons are well-known to polymerize under pressure to form covalently bonded frameworks. Here we predict by ab initio calculations two distinct three-dimensional hydrocarbon crystalline structures composed of 3-fold and 4-fold helical CH chains in rhombohedral (R3) and tetragonal (I4₁/a) symmetry, respectively. Both structures with 1:1 stoichiometry are found to be energetically more favorable than solid acetylene and cubane, and even more stable than benzene II solid at high pressure.

View Article and Find Full Text PDF

Objectives: Quite a number of studies on clinical decision support systems (CDSS) have been published in recent years to assess the characteristics and architecture of CDSS and evaluate the effects of CDSS on clinical work. However, until now there have been no relevant studies to investigate the quantity of these, and their contribution to present day thinking. The aim of this study was to explore the areas of theme, and the study design of research on CDSS in literature published in English and Chinese-language journals.

View Article and Find Full Text PDF

The topological insulator/normal insulator (TI/NI) superlattices (SLs) with multiple Dirac channels are predicted to offer great opportunity to design novel materials and investigate new quantum phenomena. Here, we report first transport studies on the SLs composed of TI Bi2Se3 layers sandwiched by NI In2Se3 layers artificially grown by molecular beam epitaxy (MBE). The transport properties of two kinds of SL samples show convincing evidence that the transport dimensionality changes from three-dimensional (3D) to two-dimensional (2D) when decreasing the thickness of building block Bi2Se3 layers, corresponding to the crossover from coherent TI transport to separated TI channels.

View Article and Find Full Text PDF

By means of the first-principles calculations, we predict a new metallic two-dimensional carbon allotrope named net W with Cmmm (D(2h)(19)) symmetry. This new carbon phase consists of squares C(4), hexagons C(6), and octagons C(8), its dynamical stability is validated based on phonon-mode analysis and it is energetically more favored over previously proposed two-dimensional carbon forms such as net C, planar C(4), biphenylene, graphyne, and the recently prepared graphdiyne. On the other hand, we find that net W possesses strong metallicity due to its rather large density of states across the Fermi level contributed by the carbon p(z) orbital.

View Article and Find Full Text PDF

By means of first-principles calculations, we theoretically studied the structural stabilities and electronic properties of a pure-carbon 2D covalent metal named planar C(4) in P4/mmm (D(1)(4h)) symmetry. Planar C(4) is confirmed to be dynamically stable in the ground state based on phonon-mode analysis, and it is more stable than graphyne and the recently prepared graphdiyne. Moreover, it has a higher density of states (DOS) at the Fermi level than any plausible metallic carbon nanotube.

View Article and Find Full Text PDF

The intriguing electronic and magnetic properties of one-side semihydrogenated silicene and germanene are investigated by means of first-principles calculations. Both one-side semihydrogenated silicene and germanene are confirmed as dynamically stable in the ground state based on phonon-mode analysis. Moreover, we find that semihydrogenation from only one side causes localized and unpaired 3p (4p) electrons in the unhydrogenated Si (Ge) sites and then introduces ferromagnetism to silicene (germanene) sheet with no need for doping, cutting, or etching.

View Article and Find Full Text PDF