We propose a hydrogel immobilized with manganese porphyrin (MnP), a biomimetic superoxide dismutase (SOD), and catalase (CAT) to modulate reactive oxygen species (ROS) and hypoxia that impede the repair of large bone defects. Our hydrogel synthesis involved thiolated chitosan and polyethylene glycol-maleimide conjugated with MnPs (MnP-PEG-MAL), which enabled gelation via a click reaction. Through optimization, a hydrogel with mechanical properties and catalytic effects favorable for bone repair was selected.
View Article and Find Full Text PDFHealing chronic diabetic wounds is challenging because of excessive reactive oxygen species (ROS) and hypoxia in the wound microenvironment. To address this issue, we propose a hydrogel wound dressing composed of polyethylene glycol (PEG) cross-linked with a biomimetic catalase, Fe-containing porphyrin (FeP) (i.e.
View Article and Find Full Text PDFAdherence to medication plays a crucial role in the effective management of chronic diseases. However, patients often miss their scheduled drug administrations, resulting in suboptimal disease control. Therefore, we propose an implantable device enabled with automated and precisely timed drug administration.
View Article and Find Full Text PDFA microneedle (MN) sensor coated with a sensing composite material was proposed for measuring glucose concentrations in interstitial fluid (ISF). The sensing composite material was prepared by blending a polymer containing glucose-responsive phenylboronic acid (PBA) moieties (i.e.
View Article and Find Full Text PDFPrompt administration of first-aid drugs can save lives during medical emergencies such as anaphylaxis and hypoglycemia. However, this is often performed by needle self-injection, which is not easy for patients under emergency conditions. Therefore, we propose an implantable device capable of on-demand administration of first-aid drugs (i.
View Article and Find Full Text PDFChemodynamic therapy (CDT) is based on the production of cytotoxic reactive oxygen species, such as hydroxyl radicals (OH). Thus, CDT can be advantageous when it is cancer-specific, in terms of efficacy and safety. Therefore, we propose NH-MIL-101(Fe), a Fe-containing metal-organic framework (MOF), as a carrier of Cu (copper)-chelating agent, d-penicillamine (d-pen; i.
View Article and Find Full Text PDFSelf-injectable therapy has several advantages in the treatment of metabolic disorders. However, frequent injections with needles impair patient compliance and medication adherence. Therefore, we develop a fully implantable device capable of on-demand administration of self-injection drugs via noninvasive manual button clicks on the outer skin.
View Article and Find Full Text PDFThe potential therapeutic implications of nitric oxide (NO) have drawn a great deal of interest for reversing multidrug resistance (MDR) in cancer; however, previous strategies utilized unstable or toxic NO donors often oxidized by the excessive addition of reactive oxygen species, leading to unexpected side effects. Therefore, this study proposed a metal-organic framework (MOF), Porous coordination network (PCN)-223-Fe, to be loaded with a biocompatible NO donor, L-arginine (L-arg; i.e.
View Article and Find Full Text PDF. Temporal interference stimulation (TIS) has shown the potential as a new method for selective stimulation of deep brain structures in small animal experiments. However, it is challenging to deliver a sufficient temporal interference (TI) current to directly induce an action potential in the deep area of the human brain when electrodes are attached to the scalp because the amount of injection current is generally limited due to safety issues.
View Article and Find Full Text PDFA bolus of human growth hormone (hGH) is often prescribed for the treatment of growth hormone deficiency, which requires frequent injections in current clinical settings. This painful needle-involved delivery often results in poor patient compliance, leading to low medication adherence and poor clinical outcomes. Therefore, we propose a magnetically actuating implantable pump (MAP) that can infuse an accurate dose of hGH only at the time of non-invasive magnet application from the skin.
View Article and Find Full Text PDFFor the prolonged, controlled delivery of systemic drugs, we propose an implantable drug-delivery chip (DDC) embedded with pairs of a microchannel and drug-reservoir serving as a drug diffusion barrier and depot, respectively. We pursued a DDC for dual drugs: a main-purpose drug, diclofenac (DF), for systemic exposure, and an antifibrotic drug, tranilast (TR), for local delivery. Thus, the problematic fibrotic tissue formation around the implanted device could be diminished, thereby less hindrance in systemic exposure of DF released from the DDC.
View Article and Find Full Text PDFCosmetic silicone implants for breast reconstruction often lead to medical complications, such as abnormally excessive fibrosis driven by foreign body granulomatous inflammation. The purpose of this study was to develop a silicone breast implant capable of local and controlled release of a glucocorticoid drug triamcinolone acetonide (TA) for the prevention of silicone-breast-implant-induced fibrosis in a Yorkshire pig model (in vivo). Implants were dip-coated in a TA solution to load 1.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2020
We propose an elastic net made of a biocompatible polymer to wrap silicone implants of various sizes, which also allows for the sustained release of an anti-inflammatory drug, triamcinolone, to prevent fibrosis. For this, we first prepared a strand composed of a mixture of polyurethane and triamcinolone via electrospinning, which was then assembled to prepare the elastic drug-delivery net (DDN). The DDN was prepared to just fit for wrapping the small silicone implant sample herein, but was also able to wrap a sample 7 times as large at 72% strain due to the elastic property of polyurethane.
View Article and Find Full Text PDFWe propose the use of an implantable device with multiple embedded drug diffusion channels, each of which is connected to a drug reservoir, for the controlled release of diclofenac. To minimize the size of the incision needed during device implantation, the device used herein was made of the soft biocompatible material polydimethylsiloxane (PDMS), thereby allowing for folding during device implantation. We aimed to achieve a profile of diclofenac release that was reproducible even after folding, and thus the channel was filled with cross-linked gelatin, which could be swollen via the infiltration of a bodily fluid to compensate for any possible defects formed during folding.
View Article and Find Full Text PDFImplantable devices for on-demand and pulsatile drug delivery have attracted considerable attention; however, many devices in clinical use are embedded with the electronic units and battery inside, hence making them large and heavy for implantation. Therefore, we propose an implantable device with multiple drug reservoirs capped with a stimulus-responsive membrane (SRM) for on-demand and pulsatile drug delivery. The SRM is made of thermosensitive POSS(MEOMA-co-OEGMA) and photothermal nanoparticles of reduced graphene oxide (rGO), and each of the drug reservoirs is filled with the same amount of human growth hormone (hGH).
View Article and Find Full Text PDF