Producing backbone degradable copolymers via free-radical copolymerization is a promising, yet challenging method to develop more sustainable materials for many applications. In this work, we present the copolymerization of 2-methylen-1,3-dioxepane (MDO) with crotonic acid derivative esters. MDO can copolymerize by radical ring-opening polymerization incorporating degradable ester moieties in the polymer backbone, although this can often be difficult due to the very unfavorable reactivity ratios.
View Article and Find Full Text PDFParticle size and particle size distribution (PSD) are important properties of polymer latexes because they strongly affect the film formation and the rheological properties of the latexes. Thus, monitoring the particle size is of paramount importance during the production of waterborne polymeric dispersions, for which online/inline measurements of the particle size are required. Herein, turbidity spectroscopy (TUS) is used to measure the particle size of nanoparticles in dispersed media.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
November 2023
Bioactive glasses (BGs) arewell known for their successful applications in tissue engineering and regenerative medicine. Recent experimental studies have shown their potential usability in oncology, either alone or in combination with other biocompatible materials, such as biopolymers. Direct contact with BG particles has been found to cause toxicity and death in specific cancer cells (bone-derived neoplastic stromal cells) in vitro.
View Article and Find Full Text PDFPolymer colloids are complex materials that have the potential to be used in a vast array of applications. One of the main reasons for their continued growth in commercial use is the water-based emulsion polymerization process through which they are generally synthesized. This technique is not only highly efficient from an industrial point of view but also extremely versatile and permits the large-scale production of colloidal particles with controllable properties.
View Article and Find Full Text PDFBeyond their well-known applications in bone tissue engineering, hydroxyapatite nanoparticles (HAp NPs) have also been showing great promise for improved cancer therapy. The chemical structure of HAp NPs offers excellent possibilities for loading and delivering a broad range of anticancer drugs in a sustained, prolonged, and targeted manner and thus eliciting lower complications than conventional chemotherapeutic strategies. The incorporation of specific therapeutic elements into the basic composition of HAp NPs is another approach, alone or synergistically with drug release, to provide advanced anticancer effects such as the capability to inhibit the growth and metastasis of cancer cells through activating specific cell signaling pathways.
View Article and Find Full Text PDFThe utilization of bioactive glasses (BGs) in cancer therapy has recently become quite promising; herein, a series of Fe-doped mesoporous 45S5-based BGs (MBGs) were synthesized via the sol-gel method in the presence of Pluronic P123 as a soft template. The physico-chemical and biological properties of the prepared glasses were well-characterized through structural assessments, thermal analyses, and electron microscopic studies. Electrochemical analyses, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), were also performed to investigate the actual potential of the FeO-containing MBGs in modulating the Fenton's reaction.
View Article and Find Full Text PDFEncapsulation technology comprises enclosing active agents (core materials) within a homogeneous/heterogeneous matrix (wall material) at the micro/nano scale [...
View Article and Find Full Text PDFIntroduction: Allan-Herndon-Dudley Syndrome (AHDS) is a rare X-linked recessive intellectual disability condition with neuromuscular involvements. Altered thyroid function tests are major milestones in AHDS diagnosis. However, due to phenotypic variations in the levels of thyroid hormones in AHDS patients, we believe that the disorder is often underdiagnosed.
View Article and Find Full Text PDFLactide-valerolactone copolymers have potential application in the packaging sector. Different copolymers were synthesized, and the kinetics of the copolymerization reactions and the microstructure of the copolymers were analysed. Lactide showed higher reactivity than valerolactone which leads to composition drift through the reaction.
View Article and Find Full Text PDFAims: Glioblastoma (GB) is the most aggressive type of brain tumor. Rapid progression, active angiogenesis, and therapy resistance are major reasons for its high mortality. Elevated expression of members of the vascular endothelial growth factor (VEGF) family suggests that anti-VEGF therapies may be potent anti-glioma therapeutic approaches.
View Article and Find Full Text PDFNanogels play a leading role in controlled release systems because they possess high water retention capacity resulting in high loading capabilities, stability in biological fluids and biocompatibility. In this scenario, every tool that allows extending the nanogel properties and expanding their potential applications is of high interest in the field of biomedicine. This article aims to contribute to the development of multifunctional nanogels, based on the combination of two polymer phases in a multilobular morphology.
View Article and Find Full Text PDFAs a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent.
View Article and Find Full Text PDFGene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles.
View Article and Find Full Text PDFDoxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients.
View Article and Find Full Text PDFProstate Cancer is the second cause of cancer-related death in men and development of metastatic castration-resistant prostate cancer (mCRPC) is the major reason for its high mortality rate. Despite various treatments, all patients succumb to resistant disease, suggesting that there is a pressing need for novel and more efficacious treatments. Members of the vascular endothelial growth factor (VEGF) family play key roles in the tumorigenesis of mCRPC, indicating that VEGF-targeted therapies may have potential anti-tumor efficacy in this malignancy.
View Article and Find Full Text PDFAngiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.
View Article and Find Full Text PDFBioactive glasses (BGs) are routinely being used as potent materials for hard and soft tissue engineering applications; however, improving their biological activities through surface functionalization and modification has been underestimated so far. The surface characteristics of BGs are key factors in determining the success of any implanted BG-based material in vivo since they regulate the affinity and binding of different biological macromolecules and thereby the interactions between cells and the implant. Therefore, a number of strategies using chemical agents (e.
View Article and Find Full Text PDFGastric adenocarcinoma (GAC), the most common malignancy of the stomach, is the fourth most common and the second cause of cancer-related death worldwide. Although HER family plays a cardinal role in tumorigenesis of GAC, trastuzumab is the only approved anti-HER drug for this malignancy and development of resistance to trastuzumab is inevitable. Additionally, single-targeted HER inhibitors have demonstrated limited activity in GAC.
View Article and Find Full Text PDFAn event-driven approach based on dynamic optimization and nonlinear model predictive control (NMPC) is investigated together with inline Raman spectroscopy for process monitoring and control. The benefits and challenges in polymerization and morphology monitoring are presented, and an overview of the used mechanistic models and the details of the dynamic optimization and NMPC approach to achieve the relevant process objectives are provided. Finally, the implementation of the approach is discussed, and results from experiments in lab and pilot-plant reactors are presented.
View Article and Find Full Text PDFPurpose: Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is the fourth most common cause of cancer-related death in the USA. Local progression, early tumor dissemination and low efficacy of current treatments are the major reasons for its high mortality rate. The ERBB family is over-expressed in PDAC and plays essential roles in its tumorigenesis; however, single-targeted ERBB inhibitors have shown limited activity in this disease.
View Article and Find Full Text PDFThe management of burn injuries is considered an unmet clinical need and, to date, no fully satisfactory solution exists to this problem. This mini-review aims to explore the potential of bioactive glasses (BGs) for burn care due to the therapeutic effects of their ionic dissolution products. BGs have been studied for more than 40 years and boast a long successful history in the substitution of damaged tissues, especially bone.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2019
Over the last decade, there has been an impressive growth of new potential applications for bioactive glasses (BGs) in regenerative medicine. Apart from being used in contact with injured bone, BGs are now showing promise in accelerating the healing of soft tissues too, such as epithelium, thus creating new hopes for the repair of damaged skin, gastrointestinal tract and airspaces of the lungs. BGs can form a biological bond with soft tissues, accelerate epithelial cell proliferation, and reduce the inflammation in the injured sites.
View Article and Find Full Text PDFNanomedicine (Lond)
December 2018
The use of different biomaterials with the ability to accelerate the repair and regeneration processes is of great importance in tissue engineering strategies. On this point, cerium oxide nanoparticles (CNPs or nanoceria) have recently attracted much attention due to their excellent biological properties including anti-oxidant, anti-inflammation and antibacterial activities as well as high angiogenic potential. The results of incorporation of these nano-sized particles into various constructs and scaffolds designed for tissue engineering applications have proven the success of this strategy in terms of improving healing process of different tissues.
View Article and Find Full Text PDFThe control of bacterial infections is of particular importance in the field of tissue engineering. Recently, much attention has been addressed toward the use of mesoporous bioactive glasses (MBGs) for antibacterial strategies, primarily because of their capability of acting as carriers for the local release of antimicrobial agents. The incorporation of antibacterial metallic ions including silver (Ag), zinc (Zn), copper (Cu and Cu), cerium (Ce and Ce), and gallium (Ga) cations into the MBG structure and their controlled release is proposed as one of the most attractive strategies for inhibiting bacterial growth and reproduction.
View Article and Find Full Text PDF