This work examines the use of accelerometers to identify vibrational patterns that can effectively predict the state of a 3D printer, which could be useful for predictive maintenance. Prototypes using both a simple rectangular shape and a more complex Octopus shape were fabricated and evaluated. Fast Fourier Transform, Spectrogram, and machine learning models, such as Principal Component Analysis and Support Vector Machine, were employed for data analysis.
View Article and Find Full Text PDFModern 3D printed components are finding applications in dynamic structures. These structures are often subject to dynamic loadings. To date, research has mostly focused on investigating the mechanical properties of these 3D printed structures with minimum attention paid to their modal analysis.
View Article and Find Full Text PDFFailure in dynamic structures poses a pressing need for fault detection systems. Interconnected sensor nodes of wireless sensor networks (WSN) offer a solution by communicating information about their surroundings. Nonetheless, these battery-powered sensors have an immense labor cost and require periodical battery maintenance and replacement.
View Article and Find Full Text PDFMicrofluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network.
View Article and Find Full Text PDFCombination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface.
View Article and Find Full Text PDF