Objectives: This study aimed to design a machine learning-based prediction framework to predict the presence or absence of systemic lupus erythematosus (SLE) in a cohort of Omani patients.
Methods: Data of 219 patients from 2006 to 2019 were extracted from Sultan Qaboos University Hospital's electronic records. Among these, 138 patients had SLE, while the remaining 81 had other rheumatologic diseases.
Objectives: This study describes an unsupervised machine learning approach used to estimate the homeostatic model assessment-insulin resistance (HOMA-IR) cut-off for identifying subjects at risk of IR in a given ethnic group based on the clinical data of a representative sample.
Methods: The approach was applied to analyse the clinical data of individuals with Arab ancestors, which was obtained from a family study conducted in Nizwa, Oman, between January 2000 and December 2004. First, HOMA-IR-correlated variables were identified to which a clustering algorithm was applied.