Publications by authors named "Hamsa Jaganathan"

In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.).

View Article and Find Full Text PDF

Efficient therapeutics and early detection has helped to increase breast cancer survival rates over the years. However, the recurrence of breast cancer remains to be a problem and this may be due to the presence of a small population of cells, called tumor initiating cells (TICs). Breast TICs are resistant to drugs, difficult to detect, and exhibit high self-renewal capabilities.

View Article and Find Full Text PDF

Silicon is one of the most abundant chemical elements found on the Earth. Due to its unique chemical and physical properties, silicon based materials and their oxides (e.g.

View Article and Find Full Text PDF

We present a facile, simple method to detect DNA methylation by measuring the transverse proton relaxation behaviour. Positively charged nanoparticles are arranged along the negatively charged backbone of DNA strands through electrostatic interactions. The arrangement of NPs along DNA strands aids to amplify and compare the transverse proton relaxation signal for un-cut versus cut DNA strands cleaved by sequence specific restriction enzymes.

View Article and Find Full Text PDF

DNA-templated nanoparticle (NP) chains were examined as potential magnetic resonance imaging (MRI) contrast agents using in vitro environments of the extracellular matrix and tissue. A 3-T clinical MRI scanner was utilized to examine and compare image contrast enhanced by dispersed NPs, DNA-templated NP chains, gold-superparamagnetic multicomponent NP chains, and polyelectrolyte encapsulated, multicomponent NP chains in both T(1)-weighted and T(2)-weighted images. In addition, the longitudinal and transverse relaxivity (r(1) and r(2)) changes were measured both in the basement membrane, using Matrigel, and in the tissue environment, using in vitro 3D cell culture scaffolds.

View Article and Find Full Text PDF

Longitudinal and transverse relaxation times of multicomponent nanoparticle (NP) chains are investigated for their potential use as multifunctional imaging agents in magnetic resonance imaging (MRI). Gold NPs (ca. 5 nm) are arranged linearly along double-stranded DNA, creating gold NP chains.

View Article and Find Full Text PDF

Metallic and superparamagnetic DNA-templated nanoparticle (NP) chains are examined as potential imaging agents. Proton relaxation times (T(1) and T(2)) are measured for DNA nanostructures using nuclear magnetic resonance (NMR) spectroscopy. The layer-by-layer (LBL) method was used to encapsulate the DNA-templated NP chains and demonstrated a change in proton relaxation times.

View Article and Find Full Text PDF

We evaluate the potential in vitro cytotoxicity that may arise from metallic and magnetic DNA-templated nanostructures. By using a fluorescence-based assay, the viability of cells was examined after treatment with DNA-templated nanostructures. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of nanoparticles internalized by the cells.

View Article and Find Full Text PDF

AFM tips terminated with PMMA colloids are used to pattern molecules in both serial and parallel modes by allowing the polymer on the tip to swell under different humidity conditions. This extension of the dip-pen nanolithography technique provides an easy methodology to place inks on different substrates without the need to perform specialized tip alignment.

View Article and Find Full Text PDF

Circular dichroism spectroscopy (CD) was used to examine the mechanism of endonuclease clipping and ligation of the DNA template nanowires. The biomolecular manipulation of the DNA template is compared for both metallic (Au) and magnetic (Fe(2)O(3) and CoFe(2)O(4)) nanowires. The dependence of nanoparticle (NP) concentration on enzymatic clipping and DNA ligation was studied, in addition to performing absorbance and thermal melting experiments.

View Article and Find Full Text PDF

In order to control the fabrication method, the mechanism used in the formation of DNA templated nanowires is investigated through circular dichroism (CD) spectroscopy. Metallic (Au) and magnetic (Fe(2)O(3) and CoFe(2)O(4)) nanoparticles (NP) are aligned along the DNA strand at various mass ratios. The DNA templated nanowires are compared to the structure of B-form dsDNA through CD experiments.

View Article and Find Full Text PDF