Publications by authors named "Hampl V"

Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing.

View Article and Find Full Text PDF

Monocercomonoides exilis is the first known amitochondriate eukaryote. Loss of mitochondria in M. exilis ocurred after the replacement of the essential mitochondrial iron-sulfur cluster (ISC) assembly machinery by a unique, bacteria-derived, cytosolic SUF system.

View Article and Find Full Text PDF

Pulmonary hypertension is a group of diseases characterized by elevated pulmonary artery pressure and pulmonary vascular resistance with significant morbidity and mortality. The most prevalent type is pulmonary hypertension secondary to left heart disease (PH-LHD). The available experimental models of PH-LHD use partial pulmonary clamping by technically nontrivial open-chest surgery with lengthy recovery.

View Article and Find Full Text PDF

Activators of hypoxia inducible factors (HIFs), such as roxadustat, are promising agents for anemia treatment. However, since HIFs are also involved in the regulation of the pulmonary circulation, we hypothesized that roxadustat increases pulmonary vascular resistance and vasoconstrictor reactivity. Using isolated, cell-free solution perfused rat lungs, we found perfusion pressure-flow curves to be shifted to higher pressures by 2 weeks of roxadustat treatment (10 mg/kg every other day), although not as much as by chronic hypoxic exposure.

View Article and Find Full Text PDF

Protists are key players in the biosphere. Here, we provide a perspective on integrating protist culturing with omics approaches, imaging, and high-throughput single-cell manipulation strategies, concluding with actions required for a successful return of the golden age of protist culturing.

View Article and Find Full Text PDF

The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix.

View Article and Find Full Text PDF

Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type.

View Article and Find Full Text PDF

Pelomyxa is a genus of anaerobic amoebae that live in consortia with multiple prokaryotic endosymbionts. Although the symbionts represent a large fraction of the cellular biomass, their metabolic roles have not been investigated. Using single-cell genomics and transcriptomics, we have characterized the prokaryotic community associated with P.

View Article and Find Full Text PDF

Paratrimastix pyriformis is a free-living flagellate thriving in low-oxygen freshwater sediments. It belongs to the group Metamonada along with human parasites, such as Giardia and Trichomonas. Like other metamonads, P.

View Article and Find Full Text PDF

Kleptoplasts (kP) are distinct among photosynthetic organelles in eukaryotes (i.e., plastids) because they are routinely sequestered from prey algal cells and function only temporarily in the new host cell.

View Article and Find Full Text PDF

The endobiotic flagellate is the only known eukaryote to have lost mitochondria and all its associated proteins in its evolutionary past. This final stage of the mitochondrial evolutionary pathway may serve as a model to explain events at their very beginning such as the initiation of protein import. We have assessed the capability of proteins from this eukaryote to enter emerging mitochondria using a specifically designed assay.

View Article and Find Full Text PDF

Pulmonary hypertension is a group of disorders characterized by elevated mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance. To test our hypothesis that combining two drugs useful in experimental pulmonary hypertension, statins and dehydroepiandrosterone sulfate (DHEA S), is more effective than either agent alone, we induced pulmonary hypertension in adult male rats by exposing them to hypoxia (10%O2) for 3 weeks. We treated them with simvastatin (60 mg/l) and DHEA S (100 mg/l) in drinking water, either alone or in combination.

View Article and Find Full Text PDF

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes.

View Article and Find Full Text PDF

The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT).

View Article and Find Full Text PDF

Monocercomonoides is a genus of anaerobic flagellates found mainly in the gut of insects and vertebrates. We explored the ploidy of six strains of Monocercomonoides using fluorescence in situ hybridization (FISH) with probes against the SufDSU gene known to be in a single copy in M. exilis.

View Article and Find Full Text PDF

Background: Mitochondria and peroxisomes are the two organelles that are most affected during adaptation to microoxic or anoxic environments. Mitochondria are known to transform into anaerobic mitochondria, hydrogenosomes, mitosomes, and various transition stages in between, collectively called mitochondrion-related organelles (MROs), which vary in enzymatic capacity. Anaerobic peroxisomes were identified only recently, and their putatively most conserved function seems to be the metabolism of inositol.

View Article and Find Full Text PDF

Aerobic organisms require oxygen for respiration but must simultaneously cope with oxidative damages inherently linked with this molecule. Unicellular amoeboflagellates of the genus Naegleria, containing both free-living species and opportunistic parasites, thrive in aerobic environments. However, they are also known to maintain typical features of anaerobic organisms.

View Article and Find Full Text PDF

is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.

View Article and Find Full Text PDF

Euglenids represent a group of protists with diverse modes of feeding. To date, only a partial genomic sequence of Euglena gracilis and transcriptomes of several phototrophic and secondarily osmotrophic species are available, while primarily heterotrophic euglenids are seriously undersampled. In this work, we begin to fill this gap by presenting genomic and transcriptomic drafts of a primary osmotroph, Rhabdomonas costata.

View Article and Find Full Text PDF

Animal models are widely used for studying diabetes in translational research. However, methods for induction of diabetes are conflicting with regards to their efficacy, reproducibility and cost. A comparison of outcomes between the diabetic models is still unknown, especially full-term pregnancy.

View Article and Find Full Text PDF

Although the mitochondria of extant eukaryotes share a single origin, functionally these organelles diversified to a great extent, reflecting lifestyles of the organisms that host them. In anaerobic protists of the group Metamonada, mitochondria are present in reduced forms (also termed hydrogenosomes or mitosomes) and a complete loss of mitochondrion in Monocercomonoides exilis (Metamonada:Preaxostyla) has also been reported. Within metamonads, retortamonads from the gastrointestinal tract of vertebrates form a sister group to parasitic diplomonads (e.

View Article and Find Full Text PDF

is a photosynthetic flagellate possessing chlorophyte-derived secondary plastids that are enclosed by only three enveloping membranes, unlike most secondary plastids, which are surrounded by four membranes. It has generally been assumed that the two innermost plastid envelopes originated from the primary plastid, while the outermost is of eukaryotic origin. It was suggested that nucleus-encoded plastid proteins pass through the middle and innermost plastid envelopes of by machinery homologous to the translocons of outer and inner chloroplast membranes, respectively.

View Article and Find Full Text PDF

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa.

View Article and Find Full Text PDF