Herein, the novel acacia wood based hierarchical porous activated carbons (AWCs) are easily prepared, low cost and have excellent characterization, such as special biomass nanopores structural stability and large specific surface areas. Activating agents such as KOH, ZnCl, and HPO have been used to convert acacia wood carbon into active carbons such as AWC-K, AWC-Z, and AWC-P, respectively, which are named after the activating agent. As a supercapacitor electrode, the AWC-K sample has a high yield was 69.
View Article and Find Full Text PDFIn the presence of dry ice, a series of graphitic materials with carboxylated edges (ECGs) were synthesized by ball milling graphite for varied times (24, 36, and 46 h). The influence of carboxylation on the physiochemical characteristics and electrochemical performance as effective electrodes for supercapacitors were assessed and compared with pure graphite. Several characterization techniques were employed to investigate into the morphology, texture, microstructure, and modification of the materials.
View Article and Find Full Text PDFCarbon-based materials are manufactured as high-performance electrodes using biomass waste in the renewable energy storage field. Herein, four types of hierarchical porous activated carbon using hibiscus sabdariffa fruits (HBFs) as a low-cost biomass precursor are synthesized through carbonization and activation. NHCl is used as a chemical blowing agent to form carbon nanosheets, which are the first types of hibiscus sabdariffa fruit-based carbon (HBFC-1) sample, and KOH also forms a significant bond in the activation process.
View Article and Find Full Text PDF