Publications by authors named "Hammou Bouwalerh"

The rat model of perinatal stress (PRS), in which exposure of pregnant dams to restraint stress reduces maternal behavior, is characterized by a metabolic profile that is reminiscent of the "metabolic syndrome". We aimed to identify plasma metabolomic signatures linked to long-term programming induced by PRS in aged male rats. This study was conducted in the plasma and frontal cortex.

View Article and Find Full Text PDF

Brain aging may be programmed by early-life stress. Aging affects males and females differently, but how perinatal stress (PRS) affects brain aging between sexes is unknown. We showed behavioral and neurobiological sex differences in non-stressed control rats that were strongly reduced or inverted in PRS rats.

View Article and Find Full Text PDF

Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine.

View Article and Find Full Text PDF

Type-5 metabotropic glutamate receptors (mGlu5) have been implicated in the mechanism of resilience to stress. They form part of the postsynaptic density (PSD), a thickening of the glutamatergic synapse that acts as a multimodal hub for multiple cellular signaling. Perinatal stress in rats triggers alterations that make adult offspring less resilient to stress.

View Article and Find Full Text PDF

Stress and the circadian systems play a major role in an organism's adaptation to environmental changes. The adaptive value of the stress system is reactive while that of the circadian system is predictive. Dysfunctions in these two systems may account for many clinically relevant disorders.

View Article and Find Full Text PDF

The interplay between experiences during critical developmental periods and later adult life is crucial in shaping individual variability in stress coping strategies. Exposure to stressful events in early life has strongly programs an individual's phenotype and adaptive capabilities. Until now, studies on programming and reversal strategies in early life stress animal models have been essentially limited to males.

View Article and Find Full Text PDF

Exposure of the mother to adverse events during pregnancy is known to induce pathological programming of the HPA axis in the progeny, thereby increasing the vulnerability to neurobehavioral disorders. Maternal care plays a crucial role in the programming of the offspring, and oxytocin plays a key role in mother/pup interaction. Therefore, we investigated whether positive modulation of maternal behavior by activation of the oxytocinergic system could reverse the long-term alterations induced by perinatal stress (PRS; gestational restraint stress 3 times/day during the last ten days of gestation) on HPA axis activity, risk-taking behavior in the elevated-plus maze, hippocampal mGlu5 receptor and gene expression in Sprague-Dawley rats.

View Article and Find Full Text PDF
Article Synopsis
  • Oxytocin receptors help with communication in the brain's hippocampus, but scientists are still figuring out exactly how they work.
  • A study found that a drug called carbetocin can improve brain function and reduce anxiety in rats that were stressed before they were born.
  • The results suggest that drugs targeting oxytocin receptors might help treat mental health issues related to stress later in life.
View Article and Find Full Text PDF

Abnormalities of synaptic transmission and plasticity in the hippocampus represent an integral part of the altered programming triggered by early life stress. Prenatally restraint stressed (PRS) rats develop long-lasting biochemical and behavioral changes, which are the expression of an anxious/depressive-like phenotype. We report here that PRS rats showed a selective impairment of depolarization- or kainate-stimulated glutamate and [(3)H]d-aspartate release in the ventral hippocampus, a region encoding memories related to stress and emotions.

View Article and Find Full Text PDF

A growing body of data suggests that the emotional dimension of a stimulus can be processed without conscious identification of the stimulus. The arousal system could be activated by unrecognised biologically significant stimuli through simple physical stimulus features related to threat, without any evaluation of the meaning of the stimulus. However, unconscious processing of emotionally laden words cannot rely only on perceptual features but must include some analysis of symbolic meaning.

View Article and Find Full Text PDF