The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes.
View Article and Find Full Text PDFA primary goal of the recent investment in sequencing is to detect novel genetic associations in health and disease improving the development of treatments and playing a critical role in precision medicine. While this investment has resulted in an enormous total number of sequenced genomes, individual studies of complex traits and diseases are often smaller and underpowered to detect rare variant genetic associations. Existing genetic resources such as the Exome Aggregation Consortium (>60,000 exomes) and the Genome Aggregation Database (~140,000 sequenced samples) have the potential to be used as controls in these studies.
View Article and Find Full Text PDF