The incorporation of photoresponsive groups into porous materials is attractive as it offers potential advantages in controlling the pore size and selectivity to guest molecules. A combination of computational modeling and experiment resulted in the synthesis of two azobenzene-derived organic cages based on building blocks identified in a computational screen. Both cages incorporate three azobenzene moieties, and are therefore capable of 3-fold isomerization, using either ditopic or tetratopic aldehydes containing diazene functionality.
View Article and Find Full Text PDFPorous liquids combine the properties of a porous solid with those of a liquid, creating a porous flowable media. Since their discovery, these materials have gathered widespread interest within the scientific community, with substantial numbers of new systems being discovered, often with a focus on increasing the pore volume and gas capacity. Which begs the question, what does the future hold for porous liquids? Recently, the first examples of photoresponsive porous liquids have emerged, allowing changes in porosity to be observed under UV irradiation.
View Article and Find Full Text PDF