Publications by authors named "Hamidreza Montazeri Aliabadi"

Breast cancer is by far the most common cancer in women, and for a while, it surpassed lung cancer as the most diagnosed cancer, regardless of gender, in 2020 [...

View Article and Find Full Text PDF

With the first reports on the possibility of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas)9 surfacing in 2005, the enthusiasm for protein silencing via nucleic acid delivery experienced a resurgence following a period of diminished enthusiasm due to challenges in delivering small interfering RNAs (siRNA), especially in vivo. However, delivering the components necessary for this approach into the nucleus is challenging, maybe even more than the cytoplasmic delivery of siRNA. We previously reported the birth of peptide/lipid-associated nucleic acids (PLANAs) for siRNA delivery.

View Article and Find Full Text PDF

Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment.

View Article and Find Full Text PDF

Rationale: There is currently no treatment for spinocerebellar ataxias (SCAs), which are a group of genetic disorders that often cause a lack of coordination, difficulty walking, slurred speech, tremors, and eventually death. Activation of K 2.2/K 2.

View Article and Find Full Text PDF

RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the β-alanine (βA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG.

View Article and Find Full Text PDF

Combinatorial silencing of more than one protein via small interfering RNA (siRNA) is a new strategy that can enhance the effect of RNA interference on cell function. To explore this strategy, we selected JAK/STAT axis as a major signaling pathway that contributes to several mechanisms involved in cancer cell proliferation and survival. We focused on four proteins involved in this pathway to explore the possibility of identifying a combinatorial targeting strategy (as the proof of concept) with enhanced efficiency: gp 130 (a co-receptor for IL6 cytokines), JAK2, STAT3, and importin α3 (the nuclear transporter reportedly involved in translocation of activated STAT3 to nucleus).

View Article and Find Full Text PDF

RNA interference (RNAi) is a powerful tool capable of targeting virtually any protein without time-consuming and expensive drug development studies. However, due to obstacles facing efficient and safe delivery, RNAi-based therapeutic approach remains a challenge. Herein, we have designed and synthesized a number of disulfide-constraining cyclic and hybrid peptides using tryptophan and arginine residues.

View Article and Find Full Text PDF

Doxorubicin (Dox) is an anthracycline chemotherapeutic agent used to treat breast, leukemia, and lymphoma malignancies. However, cardiotoxicity and inherent acquired resistance are major drawbacks, limiting its clinical application. We have previously shown that cyclic peptide [WR] containing alternate tryptophan (W) and arginine (R) residues acts as an efficient molecular transporter.

View Article and Find Full Text PDF

Doxorubicin (Dox) is used for breast cancer, leukemia, and lymphoma treatment as an effective chemotherapeutic agent. However, Dox use is restricted due to inherent and acquired resistance and an 8-fold increase in the risk of potentially fatal cardiotoxicity. Hybrid cyclic-linear peptide [RK]WA and linear peptide RKWA were conjugated with Dox through a glutarate linker to afford [RK]WA-Dox and RKWA-Dox conjugates to generate Dox derivatives.

View Article and Find Full Text PDF

RNAi is a biological process that utilizes small interfering RNA (siRNA) to prevent the translation of mRNA to protein. This mechanism could be beneficial in preventing the overexpression of proteins in cancer. However, the cellular delivery of siRNA has proven to be challenging due to its inherent negative charge and relative instability.

View Article and Find Full Text PDF

COVID-19 caused by the SARS-CoV-2 virus is a fast emerging disease with deadly consequences. The pulmonary system and lungs in particular are most prone to damage caused by the SARS-CoV-2 infection, which leaves a destructive footprint in the lung tissue, making it incapable of conducting its respiratory functions and resulting in severe acute respiratory disease and loss of life. There were no drug treatments or vaccines approved for SARS-CoV-2 at the onset of pandemic, necessitating an urgent need to develop effective therapeutics.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) therapy is a promising approach for treatment of a wide range of cancers, including breast cancers that display variable phenotypic features. To explore the general utility of siRNA therapy to control aberrant expression of genes in breast cancer, we conducted a detailed analysis of siRNA delivery and silencing response in vitro in 6 separate breast cancer cell models (MDA-MB-231, MDA-MB-231-KRas-CRM, MCF-7, AU565, MDA-MB-435 and MDA-MB-468 cells). Using lipopolymers for siRNA complexation and delivery, we found a large variation in siRNA delivery efficiency depending on the specific lipopolymer used for siRNA complexation and delivery.

View Article and Find Full Text PDF

Non-responsive subpopulation of tumor cells, and acquired resistance in initially responsive cells are major challenges for cancer therapy with molecularly-targeted drugs. While point mutations are considered the major contributing factor to acquired resistance, in this study we explored the role of heterogeneity and plasticity of selected human breast cancer cell lines (MDA-MB-231, MDA-MB-468, and AU565) in their initial and adjusted response, respectively, to ruxolitinib, everolimus, and erlotinib. After determination of lethal concentration for 50% cell death (LC50), cells were exposed to selected drugs using three different approaches: single exposure to 4 × LC50 and collection of surviving cells, multiple exposures to 1.

View Article and Find Full Text PDF

A number of amphiphilic cyclic peptides-[FR], [WR], and [WK]-containing hydrophobic and positively-charged amino acids were synthesized by Fmoc/tBu solid-phase peptide methods and evaluated for their efficiency in intracellular delivery of siRNA to triple-negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, in the presence and absence of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Among the peptides, [WR], which contains alternate tryptophan (W) and arginine (R) residues, was found to be the most efficient in the delivery of siRNA by improving the delivery by more than 3-fold when compared to other synthesized cyclic peptides that were not efficient. The data also showed that co-formulation of [WR] with lipid DOPE significantly enhanced the efficiency of siRNA delivery by up to ~2-fold compared to peptide alone.

View Article and Find Full Text PDF

Topical application of Vitamin K1 has been demonstrated to effectively treat papulopustular skin rash, a serious and frequently encountered side effect of Epidermal Growth Factor Inhibitors (EGFRIs). Systemic absorption of vitamin K1 from skin and the resultant consequence of antagonizing EGFRIs anticancer effects jeopardizes the clinical acceptability of this rather effective treatment. The purpose of the present study was to rationally formulate and evaluate the release rate and transdermal absorption of a wide range of Vitamin K1 dermal preparations with a variety of physiochemical properties.

View Article and Find Full Text PDF

Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs.

View Article and Find Full Text PDF

A number of amphiphilic difatty acyl linear and cyclic RK peptide conjugates were synthesized by solid-phase peptide methods to enhance the interaction with the hydrophobic cellular phospholipid bilayer and to improve siRNA delivery and silencing. Binding to siRNA molecules was significantly less for the cyclic peptide conjugates. A gradual decrease was observed in the particle size of the complexes with increasing peptide/siRNA ratio for most of the synthesized peptides, suggesting the complex formation.

View Article and Find Full Text PDF

In this studies, three fatty acyl derivatives of CGKRK homing peptides were coupled successfully to chitosan oligosaccharides (COS) using sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate sodium salt (sulfo-SMCC). The COS-SMCC was prepared by direct coupling between COS and sulfo-SMCC in PBS (pH7.5) at RT for 48h.

View Article and Find Full Text PDF

Introduction: Immunosuppression is the mainstay therapy in organ transplantation and autoimmune diseases. The effective clinical application of immunosuppressive agents has suffered from the emergence of systemic immunosuppression and/or individual drug side effects. Nanotechnology approaches may be used to modify the mentioned shortcomings by enhancing the delivery of immunosuppressants to target cells of the immune system, thus reducing the required dose for function, and/or reducing drug distribution to non-target tissues.

View Article and Find Full Text PDF

Unlabelled: Triple-negative breast cancer is an aggressive form of breast cancer with few therapeutic options if it recurs after adjuvant chemotherapy. RNA interference could be an alternative therapy for metastatic breast cancer, where small interfering RNA (siRNA) can silence the expression of aberrant genes critical for growth and migration of malignant cells. Here, we formulated a siRNA delivery system using lipid-substituted polyethylenimine (PEI) and hyaluronic acid (HA), and characterized the size, ζ-potential and cellular uptake of the nanoparticulate delivery system.

View Article and Find Full Text PDF

Tumor-targeted carriers provide efficient delivery of chemotherapeutic agents to tumor tissue. CGKRK is one of the well-known tumor targeting peptides with significant specificity for angiogenic blood vessels and tumor cells. Here, we designed fatty acyl conjugated CGKRK peptides, based on the hypothesis that hydrophobically-modified CGKRK peptide could enhance cellular permeation and delivery of siRNA targeted to tumor cells for effective silencing of selected proteins.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by a progressive decline in cognition and memory, leading to significant impairment in daily activities and ultimately death. It is the most common cause of dementia, the prevalence of which increases with age; however, age is not the only predisposing factor. The pathology of this cognitive impairing disease is still not completely understood, which has limited the development of valid therapeutic options.

View Article and Find Full Text PDF

Cancer cells are known to be heterogeneous and plastic, which imparts innate and acquired abilities to resist molecular targeting by short interfering RNA (siRNA). Not all cancer cells in a population would show a similar responsiveness to targeting of genes critical for their survival and even the responders could quickly transform and switch to alternative mechanism(s) for their survival. This study was designed to look at this phenomenon by analyzing the effect of siRNA silencing of selected protein mRNAs involved in cell survival and proliferation on other protein mRNAs that could contribute to cell survival.

View Article and Find Full Text PDF

Conventional breast cancer therapies have significant limitations that warrant a search for alternative therapies. Short-interfering RNA (siRNA), delivered by polymeric biomaterials and capable of silencing specific genes critical for growth of cancer cells, holds great promise as an effective, and more specific therapy. Here, we employed amphiphilic polymers and silenced the expression of two cell cycle proteins, TTK and CDC20, and the anti-apoptosis protein survivin to determine the efficacy of polymer-mediated siRNA treatment in breast cancer cells as well as side effects in nonmalignant cells in vitro.

View Article and Find Full Text PDF