With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDFTwisted moiré van der Waals heterostructures hold promise to provide a robust quantum simulation platform for strongly correlated materials and realize elusive states of matter such as topological states in the laboratory. We demonstrated that the moiré bands of twisted transition metal dichalcogenide (TMD) hetero-nanoribbons exhibit non-trivial topological order due to the tendency of valence and conduction band states in K valleys to form giant band gaps when spin-orbit coupling (SOC) is taken into account. Among the features of twisted WS[Formula: see text]/MoS[Formula: see text] and WSe[Formula: see text]/MoSe[Formula: see text], we found that the heavy fermions associated with the topological flat bands and the presence of strongly correlated states, enhance anomalous Hall conductivity (AHC) away from the magic angle.
View Article and Find Full Text PDFThe optical implementation of mathematical spatial operators is a critical step toward achieving practical high-speed, low-energy analog optical processors. In recent years, it has been shown that using fractional derivatives in many engineering and science applications leads to more accurate results. In the case of optical spatial mathematical operators, the derivatives of the first and second orders have been investigated.
View Article and Find Full Text PDFThe growing interest in lab-on-a-chip systems for plasma separation has led to the presentation of various devices. Trench-based devices benefiting from gravitational sedimentation are efficient structures with air-locking and low speed-drawbacks. The present study introduces a fast, hemolysis-free, highly efficient blood plasma separation microfluidic device.
View Article and Find Full Text PDFIn this paper, a novel compact plasmonic system is introduced to realize the phenomenon of plasmon-induced transparency. The proposed device consists of a triangle defect coupled with an ellipse-ring resonator based on a metal-insulator-metal platform. By the finite-difference time-domain method, the transmission characteristics are numerically studied in detail.
View Article and Find Full Text PDFIn this paper, a tunable low power slow light photonic crystal device with a silicon-on-insulator platform is proposed based on the combination of an asymmetric defects coupled-cavity waveguide and the electromagnetically induced transparency (EIT) phenomenon. Modulating the refractive index of special regions in the suggested structure by the EIT phenomenon leads to a relatively wideband slow light device with adjustable group index in the same structure. Using this feature, a small and compact delay line is introduced that has many applications in optical telecommunications, especially in buffers.
View Article and Find Full Text PDF