Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature.
View Article and Find Full Text PDFA life-cycle assessment (LCA) and cost analysis are presented comparing the environmental and economic impacts of using regenerative thermal oxidizer (RTO), granular activated carbon (GAC), and activated carbon fiber cloth (ACFC) systems to treat gaseous emissions from sheet-foam production. The ACFC system has the lowest operational energy consumption (i.e.
View Article and Find Full Text PDFIndustrial gas streams can contain highly variable organic vapor concentrations that need to be processed before they are emitted to the atmosphere. Fluctuations in organic vapor concentrations make it more difficult to operate a biofilter when compared to a constant vapor concentration. Hence, there is a need to stabilize the concentration of rapidly fluctuating gas streams for optimum operation of biofilters.
View Article and Find Full Text PDFA new method to achieve steady-state and dynamic-tracking desorption of organic compounds from activated carbon was developed and tested with a bench-scale system. Activated carbon fiber cloth (ACFC) was used to adsorb methyl ethyl ketone (MEK) from air streams. Direct electrothermal heating was then used to desorb the vapor to generate select vapor concentrations at 500 ppmv and 5000 ppmv in air.
View Article and Find Full Text PDFFluctuations in concentration of organic vapors in gas streams that are treated by devices such as biofilters or oxidizers make it challenging to remove the vapors from the gas streams in an efficient and economic manner. Combining adsorption with concentration-controlled desorption provides an active buffer between the source of vapors and the control device for better control of concentration and flow rate of the gas stream that is treated by the secondary control device, hence further enhancing the performance or reducing the size of the devices. Activated carbon fiber cloth is used with microwave swing adsorption to remove methyl ethyl ketone (MEK) from air streams and then provide a readily controllable feed stream of that vapor in air at a specified concentration and gas flow rate with steady-state tracking desorption.
View Article and Find Full Text PDF