Publications by authors named "Hamidreza Abdouss"

Endowing wound dressings with drug delivery capability is a suitable strategy to transfer medicinal compounds locally to damaged skin layers. These dressings are especially useful for accelerating the healing rate in the cases of long-term treatment, and adding more functionalities to the platform. In this study, a wound dressing composed of polyamide 6, hyaluronic acid, and curcumin-loaded halloysite nanotubes (PA6/HA/HNT@Cur) was designed and fabricated for wound healing applications.

View Article and Find Full Text PDF

A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-CN) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-CN nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively.

View Article and Find Full Text PDF

To develop novel imprinted poly (methacrylic acid) nanoparticles for the controlled release of Rivastigmine Tartrate (RVS), the amalgamation of molecular imprinting techniques and polymerization of precipitates were applied in this work. By permuting different concentrations of pentaerythritol triacrylate (PETA) or trimethylolpropane triacrylate (TMPTA) as cross-linkers, ten different samples were synthesized, and their abilities assessed for RVS absorption. Among them, uniform mono-disperse nanoparticles were synthesized in an RVS/PMAA/PETA mole ratio of 1:6:12, named molecularly imprinted polymers 2 (MIP2), which showed the highest RVS absorption.

View Article and Find Full Text PDF

As a hydrophilic renewable polymer, starch has been widely used in biocompatible plastics as a filler for more than two decades. The present study aimed at investigating the effects of polyethylene glycol (PEG), as a plasticizer, on the physicochemical properties of a hybrid composite-polylactic acid (PLA) and thermoplastic starch (TPS). A solvent evaporation process was adopted to gelatinize the starch and disparate PEG contents ranging from 3 to 15 wt.

View Article and Find Full Text PDF