Modelling the spatiotemporal dynamics in the activity of neural populations while also enabling their flexible inference is hindered by the complexity and noisiness of neural observations. Here we show that the lower-dimensional nonlinear latent factors and latent structures can be computationally modelled in a manner that allows for flexible inference causally, non-causally and in the presence of missing neural observations. To enable flexible inference, we developed a neural network that separates the model into jointly trained manifold and dynamic latent factors such that nonlinearity is captured through the manifold factors and the dynamics can be modelled in tractable linear form on this nonlinear manifold.
View Article and Find Full Text PDFInferring complex spatiotemporal dynamics in neural population activity is critical for investigating neural mechanisms and developing neurotechnology. These activity patterns are noisy observations of lower-dimensional latent factors and their nonlinear dynamical structure. A major unaddressed challenge is to model this nonlinear structure, but in a manner that allows for flexible inference, whether causally, non-causally, or in the presence of missing neural observations.
View Article and Find Full Text PDFMotor function depends on neural dynamics spanning multiple spatiotemporal scales of population activity, from spiking of neurons to larger-scale local field potentials (LFP). How multiple scales of low-dimensional population dynamics are related in control of movements remains unknown. Multiscale neural dynamics are especially important to study in naturalistic reach-and-grasp movements, which are relatively under-explored.
View Article and Find Full Text PDFNeural activity exhibits complex dynamics related to various brain functions, internal states and behaviors. Understanding how neural dynamics explain specific measured behaviors requires dissociating behaviorally relevant and irrelevant dynamics, which is not achieved with current neural dynamic models as they are learned without considering behavior. We develop preferential subspace identification (PSID), which is an algorithm that models neural activity while dissociating and prioritizing its behaviorally relevant dynamics.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
June 2019
Dynamical encoding models characterize neural activity with low-dimensional hidden states that dynamically evolve in time and gienerate behavior. Current methods have identified these models from single-scale activity, either spikes or fields. However, behavior is simultaneously encoded across multiple spatiotemporal scales of activity, from spikes of individual neurons to neural population activity measured through fields.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
A key element needed in a brain-machine interface (BMI) decoder is the encoding model, which relates the neural activity to intended movement. The vast majority of work have used a representational encoding model, which assumes movement parameters are directly encoded in neural activity. Recent work have in turn suggested the existence of neural dynamics that represent behavior.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Technological advances have enabled the simultaneous recording of multiscale neural activity consisting of spikes, local field potential (LFP), and electrocorticogram (ECoG). Developing models that describe the encoding of behavior within multiscale activity is essential both for understanding neural mechanisms and for various neurotechnologies such as brain-machine interfaces (BMI). Multiscale recordings consist of signals with different statistical profiles and time-scales.
View Article and Find Full Text PDF