IEEE Trans Pattern Anal Mach Intell
June 2024
Noisy labels are often encountered in datasets, but learning with them is challenging. Although natural discrepancies between clean and mislabeled samples in a noisy category exist, most techniques in this field still gather them indiscriminately, which leads to their performances being partially robust. In this paper, we reveal both empirically and theoretically that the learning robustness can be improved by assuming deep features with the same labels follow a student distribution, resulting in a more intuitive method called student loss.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2023
Background And Objectives: Prediction of patient deterioration is essential in medical care, and its automation may reduce the risk of patient death. The precise monitoring of a patient's medical state requires devices placed on the body, which may cause discomfort. Our approach is based on the processing of long-term ballistocardiography data, which were measured using a sensory pad placed under the patient's mattress.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2023
Objective: Parkinson's disease (PD) is a common neurological disorder with variable clinical manifestations and magnetic resonance imaging (MRI) findings. We propose a handcrafted image classification model that can accurately (i) classify different PD stages, (ii) detect comorbid dementia, and (iii) discriminate PD-related motor symptoms.
Methods: Selected image datasets from three PD studies were used to develop the classification model.
IEEE Trans Pattern Anal Mach Intell
March 2023
Graph Convolutional Networks (GCNs), as a prominent example of graph neural networks, are receiving extensive attention for their powerful capability in learning node representations on graphs. There are various extensions, either in sampling and/or node feature aggregation, to further improve GCNs' performance, scalability and applicability in various domains. Still, there is room for further improvements on learning efficiency because performing batch gradient descent using the full dataset for every training iteration, as unavoidable for training (vanilla) GCNs, is not a viable option for large graphs.
View Article and Find Full Text PDFCyber-attack detection via on-gadget embedded models and cloud systems are widely used for the Internet of Medical Things (IoMT). The former has a limited computation ability, whereas the latter has a long detection time. Fog-based attack detection is alternatively used to overcome these problems.
View Article and Find Full Text PDFIn the last years, the need to de-identify privacy-sensitive information within Electronic Health Records (EHRs) has become increasingly felt and extremely relevant to encourage the sharing and publication of their content in accordance with the restrictions imposed by both national and supranational privacy authorities. In the field of Natural Language Processing (NLP), several deep learning techniques for Named Entity Recognition (NER) have been applied to face this issue, significantly improving the effectiveness in identifying sensitive information in EHRs written in English. However, the lack of data sets in other languages has strongly limited their applicability and performance evaluation.
View Article and Find Full Text PDFAppl Intell (Dordr)
February 2021
The genome of the novel coronavirus (COVID-19) disease was first sequenced in January 2020, approximately a month after its emergence in Wuhan, capital of Hubei province, China. COVID-19 genome sequencing is critical to understanding the virus behavior, its origin, how fast it mutates, and for the development of drugs/vaccines and effective preventive strategies. This paper investigates the use of artificial intelligence techniques to learn interesting information from COVID-19 genome sequences.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2021
Background And Objective: High-dimensional data generally contains more accurate information for medical image, e.g., computerized tomography (CT) data can depict the three dimensional structure of organs more precisely.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2021
Comput Methods Programs Biomed
February 2021
The COrona VIrus Disease 19 (COVID-19) pandemic required the work of all global experts to tackle it. Despite the abundance of new studies, privacy laws prevent their dissemination for medical investigations: through clinical de-identification, the Protected Health Information (PHI) contained therein can be anonymized so that medical records can be shared and published. The automation of clinical de-identification through deep learning techniques has proven to be less effective for languages other than English due to the scarcity of data sets.
View Article and Find Full Text PDFCOVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model.
View Article and Find Full Text PDFAtrial Fibrillation (AF), either permanent or intermittent (paroxysnal AF), increases the risk of cardioembolic stroke. Accurate diagnosis of AF is obligatory for initiation of effective treatment to prevent stroke. Long term cardiac monitoring improves the likelihood of diagnosing paroxysmal AF.
View Article and Find Full Text PDF