A microfluidic method has been developed for real-time measurement of the effects of curcumin on the intracellular calcium concentration in a single glioma cell (U87-MG). This method is based on quantitative fluorescence measurement of intracellular calcium in a cell selected in a single-cell biochip. This biochip consists of three reservoirs, three channels, and a V-shaped cell retention structure.
View Article and Find Full Text PDFUtilizing the microfluidic single-cell technique enables us to study the inhibition of multidrug resistance due to drug efflux on a single triple-negative breast cancer cell. This method examines drug efflux inhibition on a single cell in a microfluidic chip using a conventional optical detection system constructed from an inverted microscope and a microphotometer. More importantly, the integration of single-cell selection, dye and drug loading, and fluorescence measurement for intracellular drug accumulation is all conducted on a single microfluidic chip.
View Article and Find Full Text PDF