The use of triphenylmethane sulfenyl chloride as a new precursor leads to the efficient deposition of sulfur on polycrystalline gold and Au(111) substrates. The modified surfaces are characterized using X-ray photoelectron spectroscopy (XPS), electrochemistry and scanning tunneling microscopy (STM). The XPS data shows the rapid deposition of polymeric sulfur within very short times.
View Article and Find Full Text PDFThe formation of aromatic SAMs on Au(111) using three nitro-substituted arene sulfenyl chlorides (4-nitrophenyl sulfenyl chloride (1), 2-nitrophenyl sulfenyl chloride (2), and 2,4-dinitrophenyl sulfenyl chloride (3)) is studied. The formation of SAMs and their quality are investigated as a function of the position of the nitro substituent(s) on the aromatic ring. The modified surfaces are characterized by X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS), and cyclic voltammetry (CV).
View Article and Find Full Text PDFLong-range-ordered aromatic SAMs are formed on Au(111) using 4-nitrophenyl sulfenyl chloride as a precursor. Although the main structure is a √3 × √3 with a molecular density similar to that usually found for aliphatic SAMs, particular spots presenting specific shapes are also observed by STM. These include hexagons, partial hexagons, parallelograms, and zigzags resulting from specific arrangements of adsorbed molecules.
View Article and Find Full Text PDF4-Nitrophenyl sulfenyl chloride was used as a new precursor for the formation of densely packed aromatic SAMs on gold. The adsorption involves the reductive dissociation of the S-Cl bond. A well-ordered row structure corresponding to a √3 × 4 phase with a molecular area of 27.
View Article and Find Full Text PDF