Retinopathy of Prematurity (ROP) is a critical eye disorder affecting premature infants, characterized by abnormal blood vessel development in the retina. Plus Disease, indicating severe ROP progression, plays a pivotal role in diagnosis. Recent advancements in Artificial Intelligence (AI) have shown parity with or surpass human experts in ROP detection, especially Plus Disease.
View Article and Find Full Text PDFFine-grained categorization is one of the most challenging problems in machine vision. Recently, the presented methods have been based on convolutional neural networks, increasing the accuracy of classification very significantly. Inspired by these methods, we offer a new framework for fine-grained categorization.
View Article and Find Full Text PDFSaffron classification based on machine vision techniques as well as the expert's opinion is an objective and nondestructive method that can increase the accuracy of this process in real applications. The experts in Iran classify saffron into three classes Pushal, Negin, and Sargol based on apparent characteristics. Four hundred and forty color images from saffron for the three different classes were acquired, using a mobile phone camera.
View Article and Find Full Text PDFArtif Intell Med
August 2019
The automated analysis of retinal images is a widely researched area which can help to diagnose several diseases like diabetic retinopathy in early stages of the disease. More specifically, separation of vessels and lesions is very critical as features of these structures are directly related to the diagnosis and treatment process of diabetic retinopathy. The complexity of the retinal image contents especially in images with severe diabetic retinopathy makes detection of vascular structure and lesions difficult.
View Article and Find Full Text PDFBackground And Objectives: Diabetic retinopathy (DR) is the leading cause of blindness worldwide, and therefore its early detection is important in order to reduce disease-related eye injuries. DR is diagnosed by inspecting fundus images. Since microaneurysms (MA) are one of the main symptoms of the disease, distinguishing this complication within the fundus images facilitates early DR detection.
View Article and Find Full Text PDFThe lack of publicly available datasets of computed-tomography angiography (CTA) images for pulmonary embolism (PE) is a problem felt by physicians and researchers. Although a number of computer-aided detection (CAD) systems have been developed for PE diagnosis, their performance is often evaluated using private datasets. In this paper, we introduce a new public dataset called FUMPE (standing for Ferdowsi University of Mashhad's PE dataset) which consists of three-dimensional PE-CTA images of 35 different subjects with 8792 slices in total.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2017
Diabetic retinopathy (DR) is a major cause of visual impairment, and the analysis of retinal image can assist patients to take action earlier when it is more likely to be effective. The accurate segmentation of blood vessels in the retinal image can diagnose DR directly. In this paper, a novel scheme for blood vessel segmentation based on discriminative dictionary learning (DDL) and sparse representation has been proposed.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2016
Diabetic retinopathy is one of the major causes of blindness in the world. Early diagnosis of this disease is vital to the prevention of visual loss. The analysis of retinal lesions such as exudates, microaneurysms and hemorrhages is a prerequisite to detect diabetic disorders such as diabetic retinopathy and macular edema in fundus images.
View Article and Find Full Text PDFComput Med Imaging Graph
July 2015
Diabetic retinopathy is the major cause of blindness in the world. It has been shown that early diagnosis can play a major role in prevention of visual loss and blindness. This diagnosis can be made through regular screening and timely treatment.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2015
Detection and quantitative measurement of variations in the retinal blood vessels can help diagnose several diseases including diabetic retinopathy. Intrinsic characteristics of abnormal retinal images make blood vessel detection difficult. The major problem with traditional vessel segmentation algorithms is producing false positive vessels in the presence of diabetic retinopathy lesions.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2016
Tortuosity of retinal blood vessels is an important symptom of diabetic retinopathy or retinopathy of prematurity. In this paper, we propose an automatic image-based method for measuring single vessel and vessel network tortuosity of these vessels. Simplicity of the algorithm, low-computational burden, and an excellent matching to the clinically perceived tortuosity are the important features of the proposed algorithm.
View Article and Find Full Text PDFBackground/purpose: Dermoscopy is one of the major imaging modalities used in the diagnosis of pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, computerized image analysis techniques have become important tools in this research area. Hair removal from skin lesion images is one of the key problems for the precise segmentation and analysis of the skin lesions.
View Article and Find Full Text PDFComputer-aided Diagnosis (CAD) systems can assist radiologists in several diagnostic tasks. Lung segmentation is one of the mandatory steps for initial detection of lung cancer in Posterior-Anterior chest radiographs. On the other hand, many CAD schemes in projection chest radiography may benefit from the suppression of the bony structures that overlay the lung fields, e.
View Article and Find Full Text PDFThe inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement.
View Article and Find Full Text PDF