Unfavorable environmental conditions during planting can reduce seed germination and hinder seedling growth. To address this issue, manufacturers are exploring innovative and cost-effective methods, such as cold plasma discharge. This simple, low-cost, and efficient physical technique induces significant biological responses in seeds and plants without the use of traditional, environmentally hazardous chemicals.
View Article and Find Full Text PDFThe present study set out to investigate clindamycin (CLN) removal from aqueous solution using non-thermal plasma (NTP) under atmospheric air conditions and to address the effects of some variables including pH, initial concentration of CLN, and working voltage on CLN degradation. The result showed that the NTP system exhibited excellent degradation rate and mineralization efficiency on CLN in 15 min under neutral conditions, which exceeded 90 and 45%, respectively, demonstrating its conversion to other organic by-products. Furthermore, CLN degradation was largely dependent upon the initial pH of solution, applied voltage, and reaction time.
View Article and Find Full Text PDFThe non-thermal plasma (NTP) is a superior proposed method for nitric oxide removal because of operation at atmospheric pressure and ambient temperature. The energy consumption is the main challenge of using this technology. The packed plasma reactor with dielectric materials has been extensively investigated; it has higher energy efficiency.
View Article and Find Full Text PDF