Publications by authors named "Hamid Keshvari"

In recent years, with the increased production of oilseed rape, there has been a simultaneous enhancement in reports on pathogens causing diseases. Magnetic technology has been recognized as a new agricultural method aimed at improving health and crop production. In this work, the effect of magnetic fields was studied on the mycelial growth and conidia formation of Gol125 and KH36, the causal agents of Phoma stem cancer (blackleg) disease in rapeseed.

View Article and Find Full Text PDF

An artificial ovary based on the alginate (ALG) hydrogel has been widely implemented to preserve prepubertal female fertility. However, this platform is not fully capable of successful an ovary microenvironment simulation for follicle development, holding great potential for its improvement. Therefore, this experimental study aimed to evaluate the effect of an amniotic membrane extract (AME) -loaded hydrogel on the mouse preantral follicles development.

View Article and Find Full Text PDF

Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX).

View Article and Find Full Text PDF

Gellan gum (GG) is a biodegradable polysaccharide and forms thermosensitive hydrogels by a helix-mediated mechanism. Unfortunately, the wide use of GG in tissue engineering has been restricted due to its dramatically higher gelation temperature than normal body temperature. Here, we show that partial sulfation of GG affords a cytocompatible body temperature-responsive hydrogel with an interesting thermoreversibility at 42 °C.

View Article and Find Full Text PDF

Developing an engineered scaffold inspired by structural features of healthy articular cartilage (AC) has attracted much attention. In this study, the design and fabrication of a three-layered fiber/hydrogel scaffold in which each layer replicates the organization of a pertinent layer of AC tissue is aimed. To this end, electrospun poly-L-lactic acid (PLLA) nanofibers are prepared and fragmented into nano/micro cylinders via aminolysis.

View Article and Find Full Text PDF

Objective: The present study aims to create -loaded nanofibre-based wound dressing materials to enhance the wound healing process. is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic.

View Article and Find Full Text PDF

Many research groups have investigated the various kinds of scaffolds to mimic the natural Bruch's membrane (BM) and support the retinal pigmented epithelial cells to form an organized cellular monolayer. While using prosthetic BM is identified as a promising treatment of age-related macular degeneration (AMD), a degenerative and progressive retinal disease, the effects of different signals such as electrical and morphological cues on the retinal pigmented epithelial (RPE) cells are still unknown. In this study, a laminated and conductive hydrogel/fiber composite scaffold by adding conductive polyaniline (PANi) to the scaffold's nanofibrous phase was prepared.

View Article and Find Full Text PDF

Nanotechnology has a vital role in vaccine development. Nano-adjuvants, as robust delivery systems, could stimulate immune responses. Using nanoparticles (NPs) in vaccine formulations enhances the target delivery, immunogenicity, and stability of the antigens.

View Article and Find Full Text PDF

Myocardial infarction occurs because coronary arteries insufficiency is one of the major causes of mortality worldwide. Recent studies have shown that tissue engineering of myocardial tissue to regenerate infarcted tissue or engineering of the coronary artery may help overcome this problem. In the present research, gelatin and single-walled carbon nanotube were firstly administrated to physico-chemically and biologically modulate polyurethane nanofibers.

View Article and Find Full Text PDF

Doxorubicin is an anti-cancer drug that is important for breast cancer therapy. In this study, the effects of the membrane potential of breast cancer cells (-30 mV) and normal breast epithelial cells (-60 mV) on doxorubicin (DOX) permeability was studied. To achieve this goal, black lipid membranes (BLMs) as a model cell membrane were formed with DPhPC phospholipids in a single aperture of a Teflon sheet by the Montal and Mueller method.

View Article and Find Full Text PDF

Introduction: The objective of this study was to evaluate the physical properties, cytotoxicity and sealing ability of HealApex _a new premixed calcium-silicate-phosphate-based biosealer_ in comparison with AH-26.

Methods And Materials: Setting time, working time, film thickness, flow and radiopacity evaluation were performed according to ISO 6876 specification. L929 fibroblasts were incubated with the extracts of sealers and cytotoxicity was then evaluated using MTT assay.

View Article and Find Full Text PDF

Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that characterized by destruction of substantia nigrostriatal pathway due to the loss of dopaminergic (DA) neurons. Regardless of substantial efforts for treatment of PD in recent years, an effective therapeutic strategy is still missing. In a multidisciplinary approach, bone marrow derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress neurotrophin-3 (nt-3 gene) that protect central nervous system tissues and stimulates neuronal-like differentiation of BMSCs.

View Article and Find Full Text PDF

Introduction: In recent years, the extremely low frequency electromagnetic field (ELF-EMF) has attracted a great deal of scientific interest. The ELF-EMF signal is able to control ion transport across ion channels and therefore induce cell differentiation.

Aim: The purpose of this study was to investigate the effect of ELF-EMF (50 Hz, 1 mT) on MAP2 and Nestin gene expression of dermal papilla mesenchymal cells (DPCs).

View Article and Find Full Text PDF

This study has investigated the possibility of using fluorescent dendronized magnetic nanoparticles (FDMNPs) for potential applications in drug delivery and imaging. FDMNPs were first synthesized, characterized and then the effect of Polyamidoamine (PAMAM) dendrimer functionalization and fluorescein isothiocyanate (FITC) conjugation on biocompatibility of superparamagnetic iron oxide nanoparticles (SPIONs) was evaluated. The nanostructures' cytotoxicity tests were performed at different concentrations from 10 to 500 μg/mL using MCF-7 and L929 cell lines.

View Article and Find Full Text PDF

Aims: Here we report a one-step approach for reproducible synthesis of finely tuned targeting multifunctional hybrid nanoparticles (HNPs).

Materials & Methods: A microfluidic-assisted method was employed for controlled nanoprecipitation of bisphosphonate-conjugated poly(D,L-lactide-co-glycolide) chains, while coencapsulating superparamagnetic iron oxide nanoparticles and the anticancer drug Paclitaxel.

Results: Smaller and more compact HNPs with narrower size distribution and higher drug loading were obtained at microfluidic rapid mixing regimen compared with the conventional bulk method.

View Article and Find Full Text PDF

In this study drug (paclitaxel)-loaded nanoparticles of poly hydroxybutyrate-polyethylene glycol-folic acid (PHB-PEG-FOL) were prepared by using an oil-in-water (O/W) emulsion-solvent evaporation method. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance tests ((1)H NMR). Morphology of nanoparticles was evaluated by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Introduction: The useful capabilities of information and communication technologies for improving health services are becoming widely known. However many of the managers and policymakers of health systems are not yet familiar with these technologies, their dimensions and applications and the advantages of these new technologies for creating added value in health systems. Therefore the goal of this study is to determine the awareness and attitude of employees working for Deputy of Health of Isfahan University of Medical Science regarding telemedicine and its advantages.

View Article and Find Full Text PDF

Introduction: Awareness of Outlook, objectives, benefits and impact of telemedicine technology that can promote services quality, reduce costs, increase access to Specialized and subspecialty services, and immediately guide the health system subconsciously to the introduction greater use of technology. Therefore, the aim of this study was to determine the strengths, weaknesses, opportunities and threats in the telemedicine strategic planning from the managers and experts perspective in the health department, Isfahan University of Medical Sciences, in order to take a step towards facilitating strategic planning and approaching the equity aim in health in the province.

Method: This is a descriptive-analytical study, that data collection was done cross-sectional.

View Article and Find Full Text PDF

For gene and drug delivery applications, carbon nanotubes (CNTs) have to be functionalized in order to become compatible with aqueous media and bind with genetic materials. In this study, combination of polyethyleneimine (PEI) grafted multi-walled carbon nanotubes (PEI-g-MWCNTs) and chitosan substrate is used as an efficient gene delivery system for transfection of hard-to-transfect bone marrow mesenchymal stem cells (BMSCs) with enhanced green fluorescent protein (EGFP) gene. Fourier transform infrared (FT-IR) spectra, dynamic light scattering (DLS) analysis and zeta potential measurements are used to characterize binding of PEI, particle size distribution and colloidal stability of the functionalized CNTs, respectively.

View Article and Find Full Text PDF