Many species of bacteria change their morphology and behavior under external stresses. In this study, we report transient elongation and swimming motility of a novel Enterobacter sp. strain, SM1_HS2B, in liquid broth under a standard growth condition.
View Article and Find Full Text PDFPowered by flagella, many bacterial species exhibit collective motion on a solid surface commonly known as swarming. As a natural example of active matter, swarming is also an essential biological phenotype associated with virulence, chemotaxis, and host pathogenesis. Physical changes like cell elongation and hyper-flagellation have been shown to accompany the swarming phenotype.
View Article and Find Full Text PDFActive colloidal fluids, biological and synthetic, often demonstrate complex self-organization and the emergence of collective behavior. Spontaneous formation of multiple vortices has been recently observed in a variety of active matter systems, however, the generation and tunability of the active vortices not controlled by geometrical confinement remain challenging. Here, we exploit the persistence length of individual particles in ensembles of active rollers to tune the formation of vortices and to orchestrate their characteristic sizes.
View Article and Find Full Text PDFActive particles such as swimming bacteria or self-propelled colloids spontaneously self-organize into large-scale dynamic structures. The emergence of these collective states from the motility pattern of the individual particles, typically a random walk, is yet to be probed in a well-defined synthetic system. Here, we report the experimental realization of tunable colloidal motion that reproduces run-and-tumble and Lévy trajectories.
View Article and Find Full Text PDFThe Quincke effect is an electrohydrodynamic instability which gives rise to a torque on a dielectric particle in a uniform DC electric field. Previous studies reported that a sphere initially resting on the electrode rolls with steady velocity. We experimentally find that in strong fields the rolling becomes unsteady, with time-periodic velocity.
View Article and Find Full Text PDFThe macroscopic description of buoyancy-driven thermal convection in porous media is governed by advection-diffusion processes, which in the presence of thermophysical heterogeneities fail to predict the onset of thermal convection and the average rate of heat transfer. This work extends the classical model of heat transfer in porous media by including a fractional-order advective-dispersive term to account for the role of thermophysical heterogeneities in shifting the thermal instability point. The proposed fractional-order model overcomes limitations of the common closure approaches for the thermal dispersion term by replacing the diffusive assumption with a fractional-order model.
View Article and Find Full Text PDFThe present study investigates the role of thermal nonequilibrium on natural convection in a fluid-saturated porous medium heated from below. We conduct high-resolution direct numerical simulation at the pore scale in a two-dimensional regular porous structure by means of the thermal lattice-Boltzmann method (LBM). We perform a combination of linear stability analysis of continuum-scale heat transfer models, and pore-scale and continuum-scale simulations to study the role of thermal conductivity contrasts among phases on natural convection.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2015
In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties.
View Article and Find Full Text PDF