Greenhouse gas (GHG) emissions reporting and sustainability are increasingly important for businesses around the world. Yet the lack of a single standardised method of measurement, when coupled with an inability to understand the true state of emissions in complex logistics activities, presents enormous barriers for businesses to understanding the extent of their emissions footprint. One of the traditional approaches to accurately capturing and monitoring gas emissions in logistics is through using gas sensors.
View Article and Find Full Text PDFThe Internet of Things (IoT) plays a fundamental role in monitoring applications; however, existing approaches relying on cloud and edge-based IoT data analysis encounter issues such as network delays and high costs, which can adversely impact time-sensitive applications. To address these challenges, this paper proposes an IoT framework called Sazgar IoT. Unlike existing solutions, Sazgar IoT leverages only IoT devices and IoT data analysis approximation techniques to meet the time-bounds of time-sensitive IoT applications.
View Article and Find Full Text PDFTransport is Australia's third-largest source of greenhouse gases accounting for around 17% of emissions. In recent times, and particularly as a result of the global pandemic, the rapid growth within the e-commerce sector has contributed to last-mile delivery becoming one of the main emission sources. Delivery vehicles operating at the last-mile travel long routes to deliver to customers an array of consignment parcels in varying numbers and weights, and therefore these vehicles play a major role in increasing emissions and air pollutants.
View Article and Find Full Text PDF