Publications by authors named "Hamid Assilzadeh"

Rainwater Harvesting (RWH) is increasingly recognized as a vital sustainable practice in urban environments, aimed at enhancing water conservation and reducing energy consumption. This study introduces an innovative integration of nano-composite materials as Silver Nanoparticles (AgNPs) into RWH systems to elevate water treatment efficiency and assess the resulting environmental and energy-saving benefits. Utilizing a regression analysis approach with Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), this study will reach the study objective.

View Article and Find Full Text PDF
Article Synopsis
  • Real-time monitoring of early-age concrete strength using advanced nano-enhanced sensors is crucial for preventing unexpected fractures and ensuring structural integrity.
  • This study introduces a hybrid method (NDT-LSTMs-ANN) that combines Non-Destructive Testing techniques with machine learning models to predict concrete strength based on various factors like water-to-cement ratio, temperature, and curing time.
  • The results indicate that using piezoelectric-based electro-mechanical impedance technology with these advanced sensors significantly improves concrete strength estimation and enhances safety and efficiency in construction.
View Article and Find Full Text PDF

Universities and colleges play a pivotal role in the pursuit of a future that is sustainable through their pedagogical efforts and the execution of state-of-the-art research endeavors aimed at mitigating the effects of climate change. Higher Education Institutions (HEIs) serve as crucial catalysts in advancing sustainable development. HEIs are increasingly embracing precise measures to reduce their carbon footprint (CF) while also educating students on global sustainability.

View Article and Find Full Text PDF

This study synthesized zinc oxide nanoparticles (ZnO NPs) using a novel green approach, with Sida acuta leaf extract as a capping and reducing agent to initiate nucleation and structure formation. The innovation of this study lies in demonstrating the originality of utilizing zinc oxide nanoparticles for antibacterial action, antioxidant potential, and catalytic degradation of Congo red dye. This unique approach harnesses eco-friendly methods to initiate nucleation and structure formation.

View Article and Find Full Text PDF

Because of their high electrocatalytic activity, sensitivity, selectivity, and long-term stability in electrochemical sensors and biosensors, numerous nanomaterials are being used as suitable electrode materials thanks to developments in nanotechnology. Electrochemical sensors and biosensors are two areas where two-dimensional layered materials (2DLMs) are finding increasing utility due to their unusual structure and physicochemical features. Nanosensors, by their unprecedented sensitivity and minute scale, can probe deeper into the structural integrity of piles, capturing intricacies that traditional tools overlook.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO) possess unique features that mak them a common matter among different industries. Nevertheless, traditional models of synthesizing ZnO-NPs are related with health and environmental and risks due to harmful chemicals. The biosynthesis of zinc oxide nanoparticles was achieved using the hot water extract of Sargassum wightii (SW), which serves as a reducing agent.

View Article and Find Full Text PDF

Nanotechnology offers a promising avenue to amplify the effectiveness and precision of using transgenic algae in managing WSSV in shrimp by possibly crafting nano-carriers for targeted therapeutic agent delivery or modifying algae cells at a molecular level. Leveraging the capabilities of nano-scale interventions, this study could explore innovative means to manipulate cellular processes, control biological interactions, and enhance treatment efficacy while minimizing undesirable impacts in aquatic environments. The White Spot Syndrome Virus (WSSV) is a double-stranded DNA virus with a tail and rod form that belongs to theNimaviridaefamily.

View Article and Find Full Text PDF

Taking hearing loss as a prevalent sensory disorder, the restricted permeability of blood flow and the blood-labyrinth barrier in the inner ear pose significant challenges to transporting drugs to the inner ear tissues. The current options for hear loss consist of cochlear surgery, medication, and hearing devices. There are some restrictions to the conventional drug delivery methods to treat inner ear illnesses, however, different smart nanoparticles, including inorganic-based nanoparticles, have been presented to regulate drug administration, enhance the targeting of particular cells, and decrease systemic adverse effects.

View Article and Find Full Text PDF

Throughout the past few decades, scientific agencies have paid a lot of attention to environmental issues such as acid rain, water poisoning, and global warming. In order to solve these environmental problems, metal-organic frameworks (MOFs), which are made up of metal ions and/or clusters attached to organic ligands, have shown some promise. With a focus on the usage of MOFs, this paper examines the most recent developments, difficulties, and potential future directions in the separation and storage of carbon compounds in buildings for a sustainable environment.

View Article and Find Full Text PDF

Microbial electrodeionization cells (MECs) have been investigated for various potential applications, including the elimination of persistent pollutants, chemical synthesis, the recovery of resources, and the development of biosensors. Nevertheless, MEC technology is still developing, and practical large-scale applications face significant obstacles. This review aims to investigate MEC implementations in sustainable wastewater treatment.

View Article and Find Full Text PDF

Since graphene possesses distinct electrical and material properties that could improve material performance, there is currently a growing demand for graphene-based electronics and applications. Numerous potential applications for graphene include lightweight and high-strength polymeric composite materials. Due to its structural qualities, which include low thickness and compact 2D dimensions, it has also been recognized as a promising nanomaterial for water-barrier applications.

View Article and Find Full Text PDF

The compressive strength, shrinkage, elasticity, and electrical resistivity of the cement-soil pastes (slag, fly ash) of self-healing of cementitious concrete have been studied while adding hydrogels with nano silica (NSi) in this research. Defining the hydraulic and mechanical properties of these materials requires improvement to motivate more uptake for new buildings. Initially, examining the impact of different synthesized hydrogels on cement-soil pastes showed that solid particles in the mixtures highly affected the absorption capacity of NSi, representing the importance of direct interactions between solid particles and hydrogels in a cementitious matrix.

View Article and Find Full Text PDF

A large part of the world's agricultural production, despite its adverse effects on human health and water resources, depends on the use of pesticides. Despite strict regulations, the use of pesticides continues around the world. This study aimed to determine the residual concentrations of malathion and diazinon in samples of drinking water resources.

View Article and Find Full Text PDF