Publications by authors named "Hamid Amiri"

Microbial production of xanthan gum from forage sorghum straw (FSS) was investigated. The important aspect investigated was the synthesis of xanthan gum using hemicellulose as a substrate (hemicellulose-derived xanthan), a process that has been relatively underexplored in the existing literature. Xanthomonas campestris ATCC 33913 and an isolated strain from orange peel, identified as X.

View Article and Find Full Text PDF

Multimedia is extensively used for educational purposes. However, certain types of multimedia lack proper design, which could impose a cognitive load on the user. Therefore, it is essential to predict cognitive load and understand how it impairs brain functioning.

View Article and Find Full Text PDF

Depending on its physicochemical properties and antibacterial activities, chitosan can have a wide range of applications in food, pharmaceutical, medicine, cosmetics, agriculture, and aquaculture. In this experimental study, chitosan was extracted from shrimp waste through conventional extraction, microwave-assisted extraction, and conventional extraction under microwave process conditions. The effects of the heating source on the physicochemical properties and antibacterial activity were investigated.

View Article and Find Full Text PDF

Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e.

View Article and Find Full Text PDF

Crustacean waste, consisting of shells and other inedible fractions, represents an underutilized source of chitin. Here, we explore developments in the field of crustacean-waste-derived chitin and chitosan extraction and utilization, evaluating emerging food systems and biotechnological applications associated with this globally abundant waste stream. We consider how improving the efficiency and selectivity of chitin separation from wastes, redesigning its chemical structure to improve biotechnology-derived chitosan, converting it into value-added chemicals, and developing new applications for chitin (such as the fabrication of advanced nanomaterials used in fully biobased electric devices) can contribute towards the United Nations Sustainable Development Goals.

View Article and Find Full Text PDF

Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions.

View Article and Find Full Text PDF

Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes.

View Article and Find Full Text PDF

Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions.

View Article and Find Full Text PDF

The use of multimedia learning is increasing in modern education. On the other hand, it is crucial to design multimedia contents that impose an optimal amount of cognitive load, which leads to efficient learning. Objective assessment of instantaneous cognitive load plays a critical role in educational design quality evaluation.

View Article and Find Full Text PDF

The recently developed technologies for immobilization of cellulase may address the challenges in costly hydrolysis of cellulose for cellulosic butanol production. In this study, a "hybrid" hydrolysis was developed based on chemical hydrolysis of cellulose to its oligomers followed by enzymatic post-hydrolysis of the resulting "soluble oligomers" by cellulase immobilized on chitosan-coated FeO nanoparticles. This hybrid hydrolysis stage was utilized in the process of biobutanol production from a waste textile, jeans waste, leading to selective formation of glucose and high yield of butanol production by Clostridium acetobutylicum.

View Article and Find Full Text PDF

The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes.

View Article and Find Full Text PDF

Background: In addition to their educational role, resilient schools have a good capacity in response to disasters. Due to the large student population, the schools can be a safe and secure environment during disasters, in addition to maintaining their performance after. Given the role and importance of the schools, the impact of culture and environment on resilience, without any indigenous and comprehensive tool for measuring the resilience in Iran, the study aimed to design and psychometrically evaluate the measurement tools.

View Article and Find Full Text PDF

Background: Postoperative pain management can improve patients' quality of life and decrease hospitalization rates. Preemptive analgesia may provide an effective approach for both pain control and opioid consumption decrease. A common approach for pain management after surgery is to relieve the pain that has already occurred.

View Article and Find Full Text PDF

Co-processing of lignocellulosic wastes, e.g., garden and paper wastes, and the organic matters fraction of municipal solid waste (OMSW) in an integrated bioprocess is a possible approach to realize the potential of wastes for biobutanol production.

View Article and Find Full Text PDF

Introduction: Resilient schools can warranty students' health and survival at disasters. It is obligatory that schools be prepared for natural challenges through local programs. Considering the great population of students, disaster-resilient schools can be a safe and suitable environment for students at the time of disaster.

View Article and Find Full Text PDF

Background And Objectives: School resilience is defined as risk-reducing strategies used to create a safe environment for students when faced natural disasters. Resilient schools, in addition to their educational role, provide a suitable capacity for responding to disasters and rehabilitation after the incidence. This study determined the level of disaster resilience of schools in Yazd, central Iran.

View Article and Find Full Text PDF

Clostridium acetobutylicum is widely used for the microbial production of butanol in a process known as acetone-butanol-ethanol (ABE) fermentation. However, this process suffers from several disadvantages including high oxygen sensitivity of the bacterium which makes the process complicated and necessitate oxygen elimination in the culture medium. Nesterenkonia sp.

View Article and Find Full Text PDF

Municipal solid waste (MSW) was used as a source for biobutanol production via acetone, butanol, and ethanol (ABE) fermentation. Organosolv pretreatment was used for simultaneous extraction of inhibitors, particularly tannins, and pretreatment of lignocellulosic fraction prior to hydrolysis. The hydrolysates of the pretreated MSW contained appreciable amounts of sugars and soluble starch together with a tolerable amount of inhibitors for Clostridium acetobutylicum.

View Article and Find Full Text PDF

Butanol is acknowledged as a drop-in biofuel that can be used in the existing transportation infrastructure, addressing the needs for sustainable liquid fuel. However, before becoming a thoughtful alternative for fossil fuel, butanol should be produced efficiently from a widely-available, renewable, and cost-effective source. In this regard, lignocellulosic materials, the main component of organic wastes from agriculture, forestry, municipalities, and even industries seems to be the most promising source.

View Article and Find Full Text PDF

Background: Studies have shown that zinc and selenium deficiency is common in nonalcoholic fatty liver disease (NAFLD). However, the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD are not clear enough. The aim of this study was to compare the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD prognosis.

View Article and Find Full Text PDF

Studies have shown that non-alcoholic fatty liver disease (NAFLD) patients are more prone to cardiovascular disease (CVD). Zinc and selenium deficiency are common in NAFLD. But the effects of zinc and selenium co-supplementation before and/or after disease progression on CVD markers are not clear in NAFLD patients.

View Article and Find Full Text PDF

Background: Preemptive analgesia may be considered as a method not only to alleviate postoperative pain but also to decrease analgesic consumption. Different regimens are suggested, but there is currently no standard.

Objectives: The aim was to measure the efficacy of preemptive analgesia with pregabalin, acetaminophen, naproxen, and dextromethorphan in radical neck dissection surgery for reducing the intensity of pain and morphine consumption.

View Article and Find Full Text PDF

Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts.

View Article and Find Full Text PDF

The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation.

View Article and Find Full Text PDF

Introduction: Muscle rigidity and generalized spasm can cause severe pain in patients with tetanus. Administration of high dose sedative or narcotic agents can increase respiratory failure and prolong mechanical ventilation support.

Case Presentation: In this report, ultrasound-guided sciatic nerve block was performed in a 25-year-old patient with tetanus to progress his respiratory drive which was decreased due to high dose sedative administration.

View Article and Find Full Text PDF