Publications by authors named "Hamesh Patel"

Worldwide, there is an increasing uptake of traffic management interventions aimed at reducing the impact of traffic related air pollution on public health. However, the evidence base linking the proposed changes with the resulting improvements in air quality is lacking. In this paper we present data from a micro-network of low-cost PM samplers collected from an isolated urban centre (Auckland, New Zealand).

View Article and Find Full Text PDF

Auckland is a city with limited industrial activity, road traffic being the dominant source of air pollution. Thus, the time periods when social contact and movement in Auckland were severely curtailed due to COVID-19 restrictions presented a unique opportunity to observe impacts on pedestrian exposure to air pollution under a range of different traffic flow scenarios, providing insights into the impacts of potential future traffic calming measures. Pedestrian exposure to ultrafine particles (UFPs), was measured using personal monitoring along a customised route through Central Auckland during different COVID-19-affected traffic flow conditions.

View Article and Find Full Text PDF

A case is presented for the value of archiving air quality filters to allow for retrospective analysis of emerging contaminants, that is filter constituents not considered to be harmful (and thus not identified or quantified specifically) at the time of collection but subsequently considered to be of interest. As an example, filters from a 20-year historical archive consisting of 16,000 filters from three sites across Auckland are re-examined for the presence of elongated mineral fibres known to be present in rock across the city. Originally collected for the purpose of the source apportionment of particulate matter, 10 filters from each of the three sites were chosen for reanalysis based on their high silica and aluminium content, and thus considered more likely to contain fibre-like particles (FLP).

View Article and Find Full Text PDF

The current changes in vehicle movement due to 'lockdown' conditions (imposed in cities worldwide in response to the COVID-19 epidemic) provide opportunities to quantify the local impact of 'controlled interventions' on air quality and establish baseline pollution concentrations in cities. Here, we present a case study from Auckland, New Zealand, an isolated Southern Hemisphere city, which is largely unaffected by long-range pollution transport or industrial sources of air pollution. In this city, traffic flows reduced by 60-80% as a result of a government-led initiative to contain the virus by limiting all transport to only essential services.

View Article and Find Full Text PDF