Publications by authors named "Hament K Rajor"

In this work, zinc oxide coupled cadmium tungstate (ZnO-CT) was prepared as a nano-photocatalyst through a green synthesis route using lemon leaf extract and characterized based on diverse microscopic and spectroscopic techniques. To explore the applicabilties of the prepared nanocomposite (NC), its photocatalytic activity has been investigated against Congo red (CR) dye under natural solar light irradiation conditions. ZnO- CT nano-photocatalyst showcases 97% photocatalytic degradation of the CR after 90 min of natural solar light irradiation with quantum yield of 1.

View Article and Find Full Text PDF

Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group.

View Article and Find Full Text PDF

Three dihydroxy-4-methylcoumarin (DHMC) derivatives, namely 7,8-DHMC, 6,7-DHMC and 5,7-DHMC alone and complexed with Fe(III) and ADP have been tested for their antioxidative potential. Chemical speciation studies and formation constants reveal the formation of strong DHMC-Fe-ADP (1:1:1) ternary complex. In vitro studies were done for their antioxidative property by scavenging the superoxide radicals (O2*-) generated by xanthine + xanthine oxidase (XO) reaction.

View Article and Find Full Text PDF

The inhibitory effect of 7,8-dihydroxy-4-methylcoumarin (7,8-DHMC), 5,7-dihydroxy-4-methylcoumarin (5,7-DHMC), and gallic acid on the DNA binding of recombinant p50 protein and their interaction with zinc ion were studied. Electrophoretic mobility shift assay (EMSA) using p50 and biotin labeled DNA has shown that gallic acid is more effective than the dihydroxycoumarins in inhibiting the p50-DNA binding. Molecular modeling studies suggest an explanation for these observations.

View Article and Find Full Text PDF

A detailed investigation of photodegradation of direct yellow-12 (DY12) using UV/H(2)O(2)/Fe(2+) has been carried out in a photochemical reactor. Experiments studied degradation as a function of concentration, decolorization and reduction in chemical oxygen demand (COD). The effect of operating parameters, such as UV, pH, amount of Fenton's reagent (H(2)O(2) and FeSO(4)), and amount of DY12 dye has also been determined.

View Article and Find Full Text PDF