Publications by authors named "Hamed Vaseghnia"

We present a comprehensive analysis of the non-Newtonian lattice Boltzmann method (LBM) when it is used to simulate the distribution of wall shear stress (WSS). We systematically identify sources of numerical errors associated with non-Newtonian rheological behavior of fluids in off-grid geometries. We implement the single relaxation time, Bhatnagar-Gross-Krook (BGK), and multiple relaxation time (MRT) collision operators and investigate flow in a two-dimensional channel aligned with lattice directions and off-grid Hagen-Poiseuille flow of Ostwald-de Waele (power-law) fluids.

View Article and Find Full Text PDF

A computational technique based on the pseudo-potential multiphase lattice Boltzmann method (LBM) is employed to investigate the collapse dynamics of cavitation bubbles of various liquids in the vicinity of the solid surface with different wettability conditions. The Redlich-Kwong-Soave equation of state (EoS) that includes an acentric factor is incorporated to consider the physical properties of water (H_{2}O), liquid nitrogen (LN_{2}), and liquid hydrogen (LH_{2}) in the present simulations. Accuracy and performance of the present multiphase LBM are examined by simulation of the homogenous and heterogeneous cavitation phenomena.

View Article and Find Full Text PDF