The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites.
View Article and Find Full Text PDFACM Trans Intell Syst Technol
September 2013
We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features.
View Article and Find Full Text PDFObjective: Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more efficiently by refining the binary class information in the training phase with soft labels that reflect how strongly the human expert feels about the original class labels.
View Article and Find Full Text PDFBuilding classification models from clinical data using machine learning methods often relies on labeling of patient examples by human experts. Standard machine learning framework assumes the labels are assigned by a homogeneous process. However, in reality the labels may come from multiple experts and it may be difficult to obtain a set of class labels everybody agrees on; it is not uncommon that different experts have different subjective opinions on how a specific patient example should be classified.
View Article and Find Full Text PDFBuilding classification models from clinical data often requires labeling examples by human experts. However, it is difficult to obtain a perfect set of labels everyone agrees on because medical data are typically very complicated and it is quite common that different experts have different opinions on the same patient data. A solution that has been recently explored by the research community is learning from multiple experts/annotators.
View Article and Find Full Text PDFProceedings (IEEE Int Conf Bioinformatics Biomed)
November 2011
We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features.
View Article and Find Full Text PDFDiffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately.
View Article and Find Full Text PDFProc SIAM Int Conf Data Min
January 2012
The focus of this paper is on how to select a small sample of examples for labeling that can help us to evaluate many different classification models unknown at the time of sampling. We are particularly interested in studying the sampling strategies for problems in which the prevalence of the two classes is highly biased toward one of the classes. The evaluation measures of interest we want to estimate as accurately as possible are those obtained from the contingency table.
View Article and Find Full Text PDFBuilding classification models from clinical data collected for past patients often requires additional example labeling and annotation by a human expert. Since example labeling may require to review a complete electronic health record the process can be very time consuming and costly. To make the process more cost-efficient, the number of examples an expert needs to label should be reduced.
View Article and Find Full Text PDFProc IEEE Int Conf Data Min
January 2011
In this paper, we consider the problem of conditional anomaly detection that aims to identify data instances with an unusual response or a class label. We develop a new non-parametric approach for conditional anomaly detection based on the soft harmonic solution, with which we estimate the confidence of the label to detect anomalous mislabeling. We further regularize the solution to avoid the detection of isolated examples and examples on the boundary of the distribution support.
View Article and Find Full Text PDFProc IEEE Int Conf Data Min
January 2011
Finding ways of incorporating auxiliary information or auxiliary data into the learning process has been the topic of active data mining and machine learning research in recent years. In this work we study and develop a new framework for classification learning problem in which, in addition to class labels, the learner is provided with an auxiliary (probabilistic) information that reflects how strong the expert feels about the class label. This approach can be extremely useful for many practical classification tasks that rely on subjective label assessment and where the cost of acquiring additional auxiliary information is negligible when compared to the cost of the example analysis and labelling.
View Article and Find Full Text PDF