Publications by authors named "Hamed Vahabi"

While there are many droplet manipulation techniques, all of them suffer from at least one of the following drawbacks - complex fabrication or complex equipment or liquid loss. In this work, a simple and portable technique is demonstrated that enables on-demand, contact-less and loss-less manipulation of liquid droplets through a combination of contact electrification and slipperiness. In conjunction with numerical simulations, a quantitative analysis is presented to explain the onset of droplet motion.

View Article and Find Full Text PDF

We report a simple droplet fluidic point-of-care test (POCT) that uses gravity to manipulate the sequence, timing, and motion of droplets on a surface. To fabricate this POCT, we first developed a surface coating toolbox of nine different coatings with three levels of wettability and three levels of slipperiness that can be independently tailored. We then fabricated a device that has interconnected fluidic elements-pumps, flow resistors and flow guides-on a highly slippery solid surface to precisely control the timing and sequence of motion of multiple droplets and their interactions on the surface.

View Article and Find Full Text PDF

Slippery surfaces are sought after due to their wide range of applications in self-cleaning, drag reduction, fouling-resistance, enhanced condensation, biomedical implants etc. Recently, non-textured, all-solid, slippery surfaces have gained significant attention because of their advantages over super-repellent surfaces and lubricant-infused surfaces. Currently, almost all non-textured, all-solid, slippery surfaces are hydrophobic.

View Article and Find Full Text PDF

The recent global outbreaks of epidemics and pandemics have shown us that we are severely under-prepared to cope with infectious agents. Exposure to infectious agents present in biofluids (, blood, saliva, urine ) poses a severe risk to clinical laboratory personnel and healthcare workers, resulting in hundreds of millions of hospital-acquired and laboratory-acquired infections annually. Novel technologies that can minimize human exposure through remote and automated handling of infectious biofluids will mitigate such risk.

View Article and Find Full Text PDF

Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation.

View Article and Find Full Text PDF

Due to their unique functionality, superomniphobic surfaces that display extreme repellency toward virtually any liquid, have a wide range of potential applications. However, to date, the mechanical durability of superomniphobic surfaces remains a major obstacle that prevents their practical deployment. In this work, a two-layer design strategy was developed to fabricate superomniphobic surfaces with improved durability via synergistic effect of interconnected hierarchical porous texture and micro/nano-mechanical interlocking.

View Article and Find Full Text PDF

Droplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear.

View Article and Find Full Text PDF

Omniphobic membranes are attractive for membrane distillation (MD) because of their superior wetting resistance. However, a design framework for MD membrane remains incomplete, due to the complexity of omniphobic membrane fabrication and the lack of fundamental relationship between wetting resistance and water vapor permeability. Here we present a particle-free approach that enables rapid fabrication of monolithic omniphobic membranes for MD desalination.

View Article and Find Full Text PDF

Coalescence-induced droplet jumping has the potential to enhance the efficiency of a plethora of applications. Although binary droplet jumping is quantitatively understood from energy and hydrodynamic perspectives, multiple aspects that affect jumping behavior, including droplet size mismatch, droplet-surface interaction, and condensate thermophysical properties, remain poorly understood. Here, we develop a visualization technique utilizing microdroplet dispensing to study droplet jumping dynamics on nanostructured superhydrophobic, hierarchical superhydrophobic, and hierarchical biphilic surfaces.

View Article and Find Full Text PDF

When two liquid droplets coalesce on a superrepellent surface, the excess surface energy is partly converted to upward kinetic energy, and the coalesced droplet jumps away from the surface. However, the efficiency of this energy conversion is very low. In this work, we used a simple and passive technique consisting of superomniphobic surfaces with a macrotexture (comparable to the droplet size) to experimentally demonstrate coalescence-induced jumping with an energy conversion efficiency of 18.

View Article and Find Full Text PDF

We utilized superomniphobic surfaces to systematically investigate the different regimes of coalescence-induced self-propulsion of liquid droplets with a wide range of droplet radii, viscosities, and surface tensions. Our results indicate that the nondimensional jumping velocity V is nearly constant (V ≈ 0.2) in the inertial-capillary regime and decreases in the visco-capillary regime as the Ohnesorge number Oh increases, in agreement with prior work.

View Article and Find Full Text PDF

Superomniphobic surfaces are extremely repellent to virtually all liquids. By combining superomniphobicity and shape memory effect, metamorphic superomniphobic (MorphS) surfaces that transform their morphology in response to heat are developed. Utilizing the MorphS surfaces, the distinctly different wetting transitions of liquids with different surface tensions are demonstrated and the underlying physics is elucidated.

View Article and Find Full Text PDF

Fabrication of most superomniphobic surfaces requires complex process conditions or specialized and expensive equipment or skilled personnel. In order to circumvent these issues and make them end-user-friendly, we developed the free-standing, flexible, superomniphobic films. These films can be stored and delivered to the end-users, who can readily attach them to virtually any surface (even irregular shapes) and impart superomniphobicity.

View Article and Find Full Text PDF

We used FDA-approved, edible materials to fabricate superhydrophobic coatings in a simple, low cost, scalable, single step process. Our coatings display high contact angles and low roll off angles for a variety of liquid products consumed daily and facilitate easy removal of liquids from food containers with virtually no residue. Even at high concentrations, our coatings are nontoxic, as shown using toxicity tests.

View Article and Find Full Text PDF

In this study, we explore how blood-material interactions and hemodynamics are impacted by rendering a clinical quality 25 mm St. Jude Medical Bileaflet mechanical heart valve (BMHV) superhydrophobic (SH) with the aim of reducing thrombo-embolic complications associated with BMHVs. Basic cell adhesion is evaluated to assess blood-material interactions, while hemodynamic performance is analyzed with and without the SH coating.

View Article and Find Full Text PDF