Publications by authors named "Hamed Salmanzadeh"

Growing evidence indicates that adolescent substance abuse is now an alarming concern that imposes a considerable socio-economic burden on societies. On the other hand, numerous studies have shown that due to specific neurophysiological features, the brain is more vulnerable to the adverse effects of psychoactive drugs at an early age. Unfortunately, these negative effects are not limited to the period of drug use, but can persistently affect the brain's responsiveness to future exposures to the same or other types of drug.

View Article and Find Full Text PDF

Repeated and uncontrolled seizures in epilepsy result in brain cell loss and neural inflammation. Current anticonvulsants primarily target ion channels and receptors implicated in seizure activity. Identification of neurotherapeutics that can inhibit epileptiform activity and reduce inflammation in the brain may offer significant benefits in the long-term management of epilepsy.

View Article and Find Full Text PDF

Modeling the complex and prolonged development of the mammalian central nervous system remains a profound challenge. Most studies of human stem cell derived neurons are conducted over days to weeks and may or may not include glia. Here we have utilized a single human pluripotent stem cell line, TERA2.

View Article and Find Full Text PDF

Background: Drowsy driving is one of the leading causes of severe accidents worldwide. In this study, an analyzing method based on drowsiness level proposed to detect drowsiness through electroencephalography (EEG) measurements and vehicle dynamics data.

Methods: A driving simulator was used to collect brain data in the alert and drowsy states.

View Article and Find Full Text PDF

The high number of fatal crashes caused by driver drowsiness highlights the need for developing reliable drowsiness detection methods. An ideal driver drowsiness detection system should estimate multiple levels of drowsiness accurately without intervening in the driving task. This paper proposes a multi-level drowsiness detection system by a deep neural network-based classification system using a combination of electrocardiogram and respiration signals.

View Article and Find Full Text PDF

Human stem cell-derived neurons are increasingly considered powerful models in drug discovery and disease modeling, despite limited characterization of their molecular properties. Here, we have conducted a detailed study of the properties of a commercial human induced Pluripotent Stem Cell (iPSC)-derived neuron line, iCell [GABA] neurons, maintained for up to 3 months in vitro. We confirmed that iCell neurons display neurite outgrowth within 24 h of plating and label for the pan-neuronal marker, βIII tubulin within the first week.

View Article and Find Full Text PDF

A significant number of fatal accidents are caused by drowsy drivers worldwide. Driver drowsiness detection based on electroencephalography (EEG) signals has high accuracy and is known as a reference method for evaluating drowsiness. Among brain waves, EEG alpha spindle activity is a silent feature of decreasing alertness levels.

View Article and Find Full Text PDF

Adolescence is the transitional period between childhood and adulthood and a critical period in brain development. Adolescence in humans is also associated with increased expression of risk-taking behaviors. Epidemiological and clinical studies, for example, show a surge of drug abuse and raise the hypothesis that the adolescent brain undergoes critical changes resulting in diminished control.

View Article and Find Full Text PDF

Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse.

View Article and Find Full Text PDF

Rationale: Adolescence in humans represents a unique and critical developmental time point associated with increased risk-taking behavior. Converging clinical and epidemiological studies report a peak of drug use during adolescence, leading to the hypothesis that the developing adolescents brain is at risk to lose control over drug intake. Both adolescence and drug abuse are associated with significant cognitive and psychological changes such as lack of impulse control.

View Article and Find Full Text PDF

Accumulating evidence support the growing non-medical use of morphine during adolescence. Despite this concern which has recently been addressed in some studies, cellular mechanisms underlying the long-term neurobiological and behavioral effects of opiate exposure during this critical period have still remained largely unexplored. Several reports have proposed that subtle long-lasting neurobiological alterations might be triggered by exposure to opiate derivatives or drugs of abuse particularly when this occurs during a critical phase of brain maturation such as adolescence.

View Article and Find Full Text PDF

Adolescence is a gradual period of transition from childhood to adulthood. It is considered as a sensitive developmental time point that long lasting changes occur in the brain. The present study examined adolescent chronic escalating morphine administration on morphine tolerance and dependence in adulthood.

View Article and Find Full Text PDF