Publications by authors named "Hamed Laroui"

In the present study, innovative doxorubicin-loaded nanoparticles (NPs) made of a photosensitive poly(-nitrobenzyl acrylate) (PNBA) hydrophobic matrix and an hydrophilic dextran (Dex) shell were first formulated by the emulsion-solvent evaporation process. Doxorubicin (DOX), a very well-known anticancer drug, was herein chosen as the model. DOX-loaded NPs were successfully produced by covering the hydrophobic PNBA core with Dex chains either physically adsorbed or covalently linked by changing process parameters as the presence of a catalyst (CuBr or CuSO/ascorbic acid).

View Article and Find Full Text PDF

The mechanism of how plant-derived nanovesicles are uptaken by cells remains unknown. In this study, the garlic-derived nanovesicles (GDVs) were isolated and digested with trypsin to remove all surface proteins. Digested GDVs showed less uptake compared to undigested GDVs, confirming that the surface proteins played a role in the endocytosis.

View Article and Find Full Text PDF

Colitis-associated cancer (CAC) is a subtype of colon cancer that is driven by chronic inflammation and is prevalent in chronic ulcerative colitis patients. The development of CAC is associated with the inflammation-dysplasia-carcinoma pathway which is significantly different than adenoma-carcinoma pathway of sporadic colon cancer (CRC). Matrix Metalloproteinase 9 (MMP9) is a zinc-dependent endopeptidase against extracellular matrix (ECM) proteins expressed in the gastrointestinal tract during inflammation.

View Article and Find Full Text PDF

CD98 is a multifunctional glycoprotein that is involved in various biological processes such as amino acid transport, cell adhesion, diffusion, adhesion, and proliferation. The role of CD98 in liver disease has not thoroughly been examined and is limited reports in the literature. Among these reports, direct association for CD98 in nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) have been reported.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid hepatic accumulation. Here, we investigated whether a reduction of CD98 expression mediated by CD98 siRNA-loaded nanoparticles (NPs) could attenuate liver disease markers in a mouse model of NAFLD. NPs were generated using a double emulsion/solvent evaporation technique.

View Article and Find Full Text PDF

Colitis associated cancer (CAC) is chronic inflammation driven colon cancer, prevalent among individuals with Inflammatory Bowel Disease. Matrix-metalloproteinase (MMP9) is one of the essential regulators of extra cellular matrix components. We have shown that MMP9 is protective in CAC contrary to its inflammatory role in acute-colitis.

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis.

View Article and Find Full Text PDF

Unlabelled: Inflammatory bowel diseases (IBDs) are chronic and progressive inflammatory disorders of the gastrointestinal tract. In IBD, protein serological biomarkers could be relevant tools for assessing disease activity, performing early-stage diagnosis and managing the treatment. Using the interleukin-10 knockout (IL-10(-/-)) mouse, a model that develops a time-dependent IBD-like disorder that predominates in the colon; we performed longitudinal studies of circulating protein biomarkers in IBD.

View Article and Find Full Text PDF

Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intracellular bacterial pathogen Francisella novicida is involved in enhancing envelope integrity through the regulation of a bacterial lipoprotein.

View Article and Find Full Text PDF

Patients suffering from inflammatory bowel disease (IBD) are currently treated by systemic drugs that can have significant side effects. Thus, it would be highly desirable to target TNFα siRNA (a therapeutic molecule) to the inflamed tissue. Here, we demonstrate that TNFα siRNA can be efficiently loaded into nanoparticles (NPs) made of poly (lactic acid) poly (ethylene glycol) block copolymer (PLA-PEG), and that grafting of the Fab' portion of the F4/80 Ab (Fab'-bearing) onto the NP surface via maleimide/thiol group-mediated covalent bonding improves the macrophage (MP)-targeting kinetics of the NPs to RAW264.

View Article and Find Full Text PDF

Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab'-bearing quantum dots (QDs)-loaded nanoparticles (Fab'-NPs).

View Article and Find Full Text PDF

Background: Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor expressed in the differentiated epithelial cells lining of the intestine. Under physiological conditions, KLF4 inhibits cell proliferation. Conversely, KLF4 mediates proinflammatory signaling in macrophages and its overexpression in the esophageal epithelium activates cytokines, leading to inflammation-mediated esophageal squamous cell cancer formation in mice.

View Article and Find Full Text PDF

Background & Aims: Nanoparticles have been explored as carriers of small interfering RNAs (siRNAs) and might be developed to treat patients with inflammatory bowel disease (IBD). Overexpression of CD98 on the surface of colonic epithelial cells and macrophages promotes the development and progression of IBD. We developed an orally delivered hydrogel that releases nanoparticles with single-chain CD98 antibodies on their surface (scCD98 functionalized) and loaded with CD98 siRNA (siCD98).

View Article and Find Full Text PDF

Intestinal CD98 expression plays a crucial role in controlling homeostatic and innate immune responses in the gut. Modulation of CD98 expression in intestinal cells therefore represents a promising therapeutic strategy for the treatment and prevention of inflammatory intestinal diseases, such as inflammatory bowel disease. Here, the advantages of nanoparticles (NPs) are used, including their ability to easily pass through physiological barriers and evade phagocytosis, high loading concentration, rapid kinetics of mixing and resistance to degradation.

View Article and Find Full Text PDF

Background: Dextran sodium sulfate (DSS) is commonly used in mouse studies to induce a very reproducible colitis that effectively mimics the clinical and histological features of human inflammatory bowel disease (IBD) patients, especially ulcerative colitis. However, the mechanisms of action of DSS remain poorly understood, and observations by our laboratory and other groups indicate that DSS contamination of colonic tissues from DSS-treated mice potently inhibits the quantitative reverse-transcription polymerase chain reaction (qRT-PCR) amplification of mRNA.

Results: A prior study used poly-A-mediated mRNA purification to remove DSS from RNA extracts, but we herein report a second efficient and cost-effective approach to counteract this inhibition, using lithium chloride precipitation to entirely remove DSS from RNAs.

View Article and Find Full Text PDF

The application of RNA interference (RNAi) for inflammatory bowel disease (IBD) therapy has been limited by the lack of non-cytotoxic, efficient and targetable small interfering RNA (siRNA) carriers. TNF-α is the major pro-inflammatory cytokine mainly secreted by macrophages during IBD. Here, a mannosylated bioreducible cationic polymer (PPM) was synthesized and further spontaneously assembled nanoparticles (NPs) assisted by sodium triphosphate (TPP).

View Article and Find Full Text PDF

This review describes the state of the art in nanoparticle and nanodevice applications for medical diagnosis and disease treatment. Nanodevices, such as cantilevers, have been integrated into high-sensitivity disease marker diagnostic detectors and devices, are stable over long periods of time, and display reliable performance properties. Nanotechnology strategies have been applied to therapeutic purposes as well.

View Article and Find Full Text PDF

CD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. Enteropathogenic Escherichia coli (EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactions in vitro and ex vivo and examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected with Citrobacter rodentium as an in vivo model.

View Article and Find Full Text PDF

Modification of specific Gram-negative bacterial cell envelope components, such as capsule, O-antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella.

View Article and Find Full Text PDF

Background: Adenosine, an endogenous purine nucleoside, is involved in several physiological functions. We have previously shown that A(2B)AR plays a pro-inflammatory role during colitis.

Aims: Our goals were to determine if A(2B)AR expression was necessary on immune cells/non-immune cells during colitis and if A(2B)AR was a suitable target for treating intestinal inflammation.

View Article and Find Full Text PDF

The transmembrane glycoprotein CD98 regulates integrin signaling that in turn controls cell proliferation and survival. CD98 expression is upregulated in various carcinomas, including colorectal cancer. Recently, by generating gain- and loss-of-function mouse models featuring genetic manipulation of CD98 expression specifically in intestinal epithelial cells (IECs), we have explored the crucial role of CD98 in the regulation of intestinal homeostasis and inflammation-associated tumorigenesis.

View Article and Find Full Text PDF

The concept of nanomedicine has risen to be the future of medicine. Advantages of using nanoobjects as vectors for drug delivery systems are numerous, such as fewer side effects due to a low drug dose, and high specificity between drug and target. Unlike systemic therapy, targeting a specific target is more efficient and less costly.

View Article and Find Full Text PDF

The transmembrane glycoprotein CD98 is known to be involved in intestinal inflammation. In the present study, we found that CD98 overexpression in intestinal epithelial cells does not normally affect the expression of colonic (epithelial and immune cell) microRNAs (miRNAs), small noncoding RNAs that posttranscriptionally regulate a wide variety of biological processes. However, upon dextran sulfate sodium (DSS) treatment, the expression of several colonic miRNAs, but not miRNAs from other tissues such as liver and spleen, were differentially regulated in mice overexpressing CD98 in epithelial cells compared with wild-type (WT) animals.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBDs), primarily ulcerative colitis and Crohn's disease, are inflammatory disorders caused by multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS)-induced colitis mouse model. DSS induces in vivo but not in vitro intestinal inflammation.

View Article and Find Full Text PDF

Intestinal inflammation is characterized by epithelial disruption, leading to loss of barrier function and the recruitment of immune cells, including neutrophils. Although the mechanisms are not yet completely understood, interactions between environmental and immunological factors are thought to be critical in the initiation and progression of intestinal inflammation. In recent years, it has become apparent that the di/tripeptide transporter PepT1 may play an important role in the pathogenesis of such inflammation.

View Article and Find Full Text PDF