The highly desirable characteristics of ternary mixtures of ionic liquids, organic solvents, and metal salts make them a promising candidate for use in various electrothermal energy storage and conversion systems. In this study, using large-scale classical molecular dynamics simulations, we looked into 10 different ternary electrolyte mixtures using combinations of [EMIM], [BMIM], and [OMIM] cations with [NO], [BF], [PF], [ClO], [TFO], and [NTf] anions, tetraglyme, and Li salt to study the effect of ionic liquid composition on the phase behavior of ternary electrolyte mixtures. We uncovered that in these electrolytes, phase separation is mainly a function of pairwise binding energy of the constituents of the mixture.
View Article and Find Full Text PDFWe investigate the phase behavior of ternary mixtures of ionic liquid, organic solvent, and lithium salt by molecular dynamics simulations. We find that at room temperature, the electrolyte separates into distinct phases with specific compositions; an ion-rich domain that contains a fraction of solvent molecules and a second domain of pure solvent. The phase separation is shown to be entropy-driven and is independent of lithium salt concentration.
View Article and Find Full Text PDF