This study reports the full recycling of dolomite waste (DW) in the fabrication of a novel cementitious material through a facile and eco-efficient method. The proposed technique includes mixing different alkali-activators (i.e.
View Article and Find Full Text PDFMany research articles and reviews have recognized alkali-activated materials (AAMs) as eco-friendly alternative binders to ordinary Portland cement (OPC) due to their economic andenvironmental advantages. However, few literature surveys reported the physical, mechanical and microstructural changes that occur after the exposure of AAMs to elevated temperatures. Owing to the wide diversity in the properties of aluminosilicates, alkali-activation conditions, and additives, a deep survey is needed to understand how different factors can affect the performance of AAMs under elevated temperatures.
View Article and Find Full Text PDFThis study reports a potential approach for the valorization of glass waste (GW) that is mainly composed of amorphous silica to prepare lightweight foamed glass (FG). The preparation of FG was achieved by mixing sodium hydroxide with GW powder followed by sintering at a temperature of 800 °C. As-synthesized FG was characterized and applied as an effective adsorbent for the removal of hazardous organic water contaminants, in particular, methylene blue (MB) dye.
View Article and Find Full Text PDFThe role of nanozinc source (nanohydrozincite: nHZ; nanozinc oxide: nZO) on the performance of alkali-activated slag (AAS) was explored for the first time in the present work. The results showed that nHZ with different contents (0.5, 1.
View Article and Find Full Text PDFGeopolymer bricks from lead glass sludge (LGS) and alumina flakes filling (AFF) waste were synthesized in the present work. AFF waste was chemically treated to prepare sodium aluminate (NaAlO) powder. Silicate source (untreated LGS and thermally treated one at 600 °C (LGS600)) and sodium oxide (NaO) concentration (as NaAlO) were the compositional parameters, which affected the physical and mechanical properties (compressive strength, water absorption, and bulk density) of the prepared bricks.
View Article and Find Full Text PDFThis study represents the sustainable/safe consumption of lead glass sludge (LGS) in the fabrication of thermally insulating foamed glass via sintering (750-950º C) and chlorination processes. The impact of selected additives including calcium chloride (CaCl) and sodium hydroxide (NaOH) on the foaming efficiency and Pb-stabilization has been deeply investigated. LGS is mainly lead silicate material with considerable content of calcium carbonate, which acts as foaming agent during sintering process.
View Article and Find Full Text PDFHerein, the possibility of including recycled glass powder as a promising material in amalgamation with slag to produce new binder materials activated by sodium silicate solution capable to resist high temperatures was studied. Slag was partially replaced with glass powder (GP) at ratios in the range of 0-15%, by weight, with a step of 5%. The powders were activated by a constant concentration of sodium silicate solution.
View Article and Find Full Text PDFHybrid cement (HC) can be defined as alkali activated-blended-Portland cement (PC). It is prepared by the addition of an alkaline solution to high-volume aluminosilicate-blended-PC. Although this cement exhibits higher mechanical performance compared to conventional blended one (aluminosilicate-PC blend), it represents lower commercial viability because of the corrosive nature of alkaline solution.
View Article and Find Full Text PDFMaterials (Basel)
December 2020
This investigation studies the effects of hot water and hot air curing on the strength development, transport properties, and freeze-thaw resistance of mortars incorporating low-heat blast furnace slag cement and nanosilica (NS). Mortar samples were prepared and stored in ambient conditions for 24 h. After demolding, mortar samples were subjected to two different hot curing methods: Hot water and hot air curing (40 °C and 60 °C) for 24 h.
View Article and Find Full Text PDFThis study focused on the stabilization of lead glass sludge (LGS) using reactive magnesia (MgO) via the fabrication of lightweight building bricks. Two types of MgO with different reactivities were prepared by the thermal treatment of magnesium carbonate at 800 °C and 1200 °C (MgO-800 and MgO-1200, respectively). The fabrication of bricks and Pb stabilization were performed by wet mixing LGS with MgO followed by humidity incubation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2020
This study focuses on utilizing a plant-derived urease enzyme (PDUE)-urea mixture to remove heavy metals from water as constituents of nano-carbonate minerals. The bio-removal process was conducted by individually mixing PbCl, CuCl, and NiCl solutions with a PDUE-urea mixture, followed by incubation for 24 h at 23 ± 2 °C. The preliminary results revealed that the proposed method exhibited high Pb removal efficiency (˃ 99%) in a short time (8 h); meanwhile, moderate Cu and Ni removal efficiencies (67.
View Article and Find Full Text PDF