Publications by authors named "Hambsch M"

Electrically conductive coordination polymers (ECCPs), particularly those incorporating benzenehexathiol (BHT) ligands, are emerging as a distinctive class of electronic materials with tunable semiconducting and metallic properties. However, the exploration of novel ECCPs with low-symmetry structures and electrical anisotropy remains under development. Here, we report the on-water surface synthesis of a novel ECCP, namely CuBHT, which exhibits a low-symmetry structure and unique in-plane electrical anisotropy that differs from the well-known CuBHT phase.

View Article and Find Full Text PDF

The properties of polycrystalline materials are often dominated by defects; two-dimensional (2D) crystals can even be divided and disrupted by a line defect. However, 2D crystals are often required to be processed into films, which are inevitably polycrystalline and contain numerous grain boundaries, and therefore are brittle and fragile, hindering application in flexible electronics, optoelectronics and separation. Moreover, similar to glass, wood and plastics, they suffer from trade-off effects between mechanical strength and toughness.

View Article and Find Full Text PDF

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs).

View Article and Find Full Text PDF

Two-dimensional van der Waals heterostructures (2D vdWhs) are of significant interest due to their intriguing physical properties critically defined by the constituent monolayers and their interlayer coupling. Synthetic access to 2D vdWhs based on chemically tunable monolayer organic 2D materials remains challenging. Herein, the fabrication of a novel organic-inorganic bilayer vdWh by combining π-conjugated 2D coordination polymer (2DCP, i.

View Article and Find Full Text PDF

Blue energy between seawater and river water is attracting increasing interest, as one of the sustainable and renewable energy resources that can be harvested from water. Within the reverse electrodialysis applied in blue energy conversion, novel membranes with nanoscale confinement that function as selective ion transport mediums are currently in high demand for realizing higher power density. The primary challenge lies in constructing well-defined nanochannels that allow for low-energy barrier transport.

View Article and Find Full Text PDF

Bismuth oxide iodide (BiOI) has been viewed as a suitable environmentally-friendly alternative to lead-halide perovskites for low-cost (opto-)electronic applications such as photodetectors, phototransistors and sensors. To enable its incorporation in these devices in a convenient, scalable, and economical way, BiOI thin films were investigated as part of heterojunctions with various p-type organic semiconductors (OSCs) and tested in a field-effect transistor (FET) configuration. The hybrid heterojunctions, which combine the respective functionalities of BiOI and the OSCs were processed from solution under ambient atmosphere.

View Article and Find Full Text PDF

The water surface provides a highly effective platform for the synthesis of two-dimensional polymers (2DP). In this study, we present an efficient on-water surface synthesis of crystalline monolayer 2D polyimide (2DPI) through the imidization reaction between tetra (4-aminophenyl) porphyrin (M1) and perylenetracarboxylic dianhydride (M2), resulting in excellent stability and coverage over a large area (tens of cm). We further fabricate innovative organic-inorganic hybrid van der Waals heterostructures (vdWHs) by combining with exfoliated few-layer molybdenum sulfide (MoS).

View Article and Find Full Text PDF

Controlling site-selectivity and reactivity in chemical reactions continues to be a key challenge in modern synthetic chemistry. Here, we demonstrate the discovery of site-selective chemical reactions on the water surface via a sequential assembly approach. A negatively charged surfactant monolayer on the water surface guides the electrostatically driven, epitaxial, and aligned assembly of reagent amino-substituted porphyrin molecules, resulting in a well-defined J-aggregated structure.

View Article and Find Full Text PDF

Conjugated polymers often show efficient charge carrier transport along their backbone which is a primary factor in the electrical behavior of Organic Field Effect Transistor (OFETs) devices fabricated from these materials. Herein, a solution shearing procedure is reported to fabricate micro/nano wires from a diketopyrrolopyrrole (DPP)-based polymer. Millimeter to nanometer long polymer wires orientated in the coating direction are developed after a thorough analysis of the deposition conditions.

View Article and Find Full Text PDF

Quasi-2D (q2D) conjugated polymers (CPs) are polymers that consist of linear CP chains assembled through non-covalent interactions to form a layered structure. In this work, the synthesis of a novel crystalline q2D polypyrrole (q2DPPy) film at the air/H SO (95%) interface is reported. The unique interfacial environment facilitates chain extension, prevents disorder, and results in a crystalline, layered assembly of protonated quinoidal chains with a fully extended conformation in its crystalline domains.

View Article and Find Full Text PDF

Organic phototransistors can enable many important applications such as nonvolatile memory, artificial synapses, and photodetectors in next-generation optical communication and wearable electronics. However, it is still a challenge to achieve a big memory window (threshold voltage response ∆V ) for phototransistors. Here, a nanographene-based heterojunction phototransistor memory with large ∆V responses is reported.

View Article and Find Full Text PDF

sp carbon-conjugated covalent organic frameworks (spc-COFs) with superb in-plane π-conjugations, high chemical stability, and robust framework structure are expected to be ideal films/membranes for a wide range of applications including energy-related devices and optoelectronics. However, so far, spc-COFs have been mainly limited to microcrystalline powders, and this consequently hampered their performances in devices. Herein, we report a simple and robust methodology to fabricate large-area, free-standing, and crystalline spc-COF films (TFPT-TMT and TB-TMT) on various solid substrates (e.

View Article and Find Full Text PDF

Two-dimensional (2D) membranes are emerging candidates for osmotic energy conversion. However, the trade-off between ion selectivity and conductivity remains the key bottleneck. Here we demonstrate a fully crystalline imine-based 2D polymer (2DPI) membrane capable of combining excellent ionic conductivity and high selectivity for osmotic energy conversion.

View Article and Find Full Text PDF

Solution-processed metal oxide (MO) thin films have been extensively studied for use in thin-film transistors (TFTs) due to their high optical transparency, simplicity of fabrication methods, and high electron mobility. Here, we report, for the first time, the improvement of the electronic properties of solution-processed indium oxide (InO) films by the subsequent addition of an organic p-type semiconductor material, here 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), yielding organic-inorganic hybrid TFTs. The addition of TIPS-pentacene not only improves the electron mobility by enhancing the charge carrier percolation pathways but also improves the electronic and temporal stability of the () characteristics as well as reduces the number of required spin-coating steps of the InO precursor solution.

View Article and Find Full Text PDF

A blend of a low-optical-gap diketopyrrolopyrrole polymer and a fullerene derivative, with near-zero driving force for electron transfer, is investigated. Using femtosecond transient absorption and electroabsorption spectroscopy, the charge transfer (CT) and recombination dynamics as well as the early-time transport are quantified. Electron transfer is ultrafast, consistent with a Marcus-Levich-Jortner description.

View Article and Find Full Text PDF

The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables access to direct charge transport, dial-in lateral/vertical electronic devices, and the unveiling of transport mechanisms but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu[PcM-O], M = Cu or Fe) with an unprecedented edge-on layer orientation at the air/water interface. The edge-on structure formation is guided by the preorganization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity.

View Article and Find Full Text PDF

Blending organic molecules to tune their energy levels is currently being investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy and electron affinity can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here we show that the energy gap of organic semiconductors can also be tuned by blending.

View Article and Find Full Text PDF

2D conjugated metal-organic frameworks (2D c-MOFs) are emerging as electroactive materials for chemiresistive sensors, but selective sensing with fast response/recovery is a challenge. Phthalocyanine-based Ni [MPc(NH) ] 2D c-MOF films are presented as active layers for polarity-selective chemiresisitors toward water and volatile organic compounds (VOCs). Surface-hydrophobic modification by grafting aliphatic alkyl chains on 2D c-MOF films decreases diffused analytes into the MOF backbone, resulting in a considerably accelerated recovery progress (from ca.

View Article and Find Full Text PDF

Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g.

View Article and Find Full Text PDF

Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic-inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm ), monolayer 2D polyimide (2DPI) with 3.

View Article and Find Full Text PDF

Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers-semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)-in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.

View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional (2D) polymers are promising for advanced material design, but understanding grain boundaries in these materials is limited.
  • High-resolution transmission electron microscopy was used to directly observe grain boundaries in a layered 2D polyimine, revealing detailed formation mechanisms.
  • The study identified key processes like "birth-and-spread" growth and self-correcting defects, which could influence future research on the relationship between defects and properties in 2D polymers.
View Article and Find Full Text PDF

Semiconducting donor-acceptor copolymers are considered to be a promising material class for solution-coated, large-scale organic electronic applications. A large number of works have shown that the best-performing organic field-effect transistors (OFETs) are obtained on low-surface-energy substrates. The meniscus instabilities that occur when coating on such surfaces considerably limit the effective deposition speeds.

View Article and Find Full Text PDF