Publications by authors named "Hamayun J Sharifi"

Human macrophages are protected by intrinsic antiviral defenses that provide moderate protection against HIV-1 infection. Macrophages that do become infected can serve as long-lived reservoirs, to disseminate HIV-1 to CD4 T cells. Infection of macrophages with HIV-1 and HIV-2 is inhibited by constitutive mobilization of antioxidant response master transcription regulator Nrf2.

View Article and Find Full Text PDF

Background: The tumor suppressor gene p53 has been found to suppress HIV infection by various mechanisms, but the inhibition of HIV at an early stage of replication by host cell p53 and its downstream gene p21 has not been well studied.

Method: VSV-G pseudotyped HIV-1 or HIV-2 viruses with GFP or luciferase reporter gene were used to infect HCT116 p53 cells, HCT116 p53 cells and hMDMs. The infections were detected by flow cytometry or measured by luciferase assay.

View Article and Find Full Text PDF

Marburg virus, the Kaposi's sarcoma-associated herpesvirus (KSHV) and Dengue virus all activate, and benefit from, expression of the transcription regulator nuclear erythroid 2-related factor 2 (Nrf2). The impact of Nrf2 activation on human immunodeficiency virus (HIV) infection has not been tested. Sulforaphane (SFN), produced in cruciferous vegetables after mechanical damage, mobilizes Nrf2 to potently reprogram cellular gene expression.

View Article and Find Full Text PDF

Unlabelled: Human immunodeficiency virus (HIV) seizes control of cellular cullin-RING E3 ubiquitin ligases (CRLs) to promote viral replication. HIV-1 Vpr and HIV-2/simian immunodeficiency virus (SIV) Vpr and Vpx engage the cullin4 (CUL4)-containing ubiquitin ligase complex (CRL4) to cause polyubiquitination and proteasomal degradation of host proteins, including ones that block infection. HIV-1 Vpr engages CRL4 to trigger the degradation of uracil-N-glycosylase 2 (UNG2).

View Article and Find Full Text PDF

Background: HIV and SIV defeat antiviral proteins by usurping Cullin-RING E3 ubiquitin ligases (CRLs) and likely influence other cellular processes through these as well. HIV-2 viral protein X (Vpx) engages the cullin4-containing CRL4 complex to deplete the antiviral protein SAMHD1. Vif expressed by HIV-1 and HIV-2 taps a cullin5 ubiquitin ligase complex to mark the antiviral protein APOBEC3G for destruction.

View Article and Find Full Text PDF

The HIV-1 protein Vpr enhances macrophage infection, triggers G2 cell cycle arrest, and targets cells for NK-cell killing. Vpr acts through the CRL4(DCAF1) ubiquitin ligase complex to cause G2 arrest and trigger expression of NK ligands. Corresponding ubiquitination targets have not been identified.

View Article and Find Full Text PDF

Background: The HIV1 protein Vpr assembles with and acts through an ubiquitin ligase complex that includes DDB1 and cullin 4 (CRL4) to cause G2 cell cycle arrest and to promote degradation of both uracil DNA glycosylase 2 (UNG2) and single-strand selective mono-functional uracil DNA glycosylase 1 (SMUG1). DCAF1, an adaptor protein, is required for Vpr-mediated G2 arrest through the ubiquitin ligase complex. In work described here, we used UNG2 as a model substrate to study how Vpr acts through the ubiquitin ligase complex.

View Article and Find Full Text PDF

Purpose Of Review: The search for the role(s) that HIV-1 Vpr and its HIV2/SIV paralogs Vpr and Vpx play in viral infection and pathogenesis showed that all three engage CRL4 ubiquitin ligase complexes. This association triggers ubiquitination and degradation of cellular substrates. The identity of the ubiquitin ligase substrates is only now beginning to be revealed.

View Article and Find Full Text PDF