Publications by authors named "Hamadi Iddi Boga"

To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops.

View Article and Find Full Text PDF

Soil microbiomes in forest ecosystems act as both nutrient sources and sinks through a range of processes including organic matter decomposition, nutrient cycling, and humic compound incorporation into the soil. Most forest soil microbial diversity studies have been performed in the northern hemisphere, and very little has been done in forests within African continent. This study examined the composition, diversity and distribution of prokaryotes in Kenyan forests top soils using amplicon sequencing of V4-V5 hypervariable region of the 16S rRNA gene.

View Article and Find Full Text PDF

Vascular shrubs growing along the draw-down zones of saline lakes must develop adaptive mechanisms to cope with high salinity, erratic environmental conditions, and other biotic and abiotic stresses. Microbial endophytes from plants growing in these unique environments harbor diverse metabolic and genetic profiles that play an important role in plant growth, health, and survival under stressful conditions. A variety of bacterial endophytes have been isolated from salt tolerant plants but their potential applications in agriculture have not been fully explored.

View Article and Find Full Text PDF

Open access to sequence data is a cornerstone of biology and biodiversity research, but has created tension under the United Nations Convention on Biological Diversity (CBD). Policy decisions could compromise research and development, unless a practical multilateral solution is implemented.

View Article and Find Full Text PDF

As a step towards better understanding of diversity and biology of phages and their hosts in haloalkaline Lake Elmenteita, phages were isolated from sediment samples and overlying water using indigenous bacteria as hosts. 17 seemingly different phages of diverse morphotypes with different dimensions and partly exhibiting remarkably unusual ultrastructures were revealed by transmission electron microscopy. 12 clonal phage isolates were further characterized.

View Article and Find Full Text PDF

We report complete genome sequences of eight bacteriophages isolated from Haloalkaline Lake Elmenteita found on the floor of Kenyan Rift Valley. The bacteriophages were sequenced, annotated and a comparative genomic analysis using various Bioinformatics tools carried out to determine relatedness of the bacteriophages to each other, and to those in public databases. Basic genome properties like genome size, percentage coding density, number of open reading frames, percentage GC content and gene organizations revealed the bacteriophages had no relationship to each other.

View Article and Find Full Text PDF

Human pathogens can survive and grow in hot springs. For water quality assessment, Escherichia coli or Enterococci are the main thermotolerant enteric bacteria commonly used to estimate the load of pathogenic bacteria in water. However, most of the environmental bacteria are unculturable thus culture methods may cause bias in detection of most pathogens.

View Article and Find Full Text PDF

Background: Lake Magadi and little Magadi are hypersaline, alkaline lakes situated in the southern part of Kenyan Rift Valley. Solutes are supplied mainly by a series of alkaline hot springs with temperatures as high as 86 °C. Previous culture-dependent and culture-independent studies have revealed diverse groups of microorganisms thriving under these conditions.

View Article and Find Full Text PDF

During a screening for novel and biotechnologically useful bacteria in haloalkaline lakes, strain No.156(T) was isolated from a sediment sample from lake Elmenteita in the African Rift Valley and studied by a polyphasic taxonomic approach. The strain was observed to form yellow aerial and substrate mycelia; optimal growth was found to be at 30-35 °C in salt concentrations of 6-9 % (w/v) and at pH 7-9.

View Article and Find Full Text PDF

A novel strain, designated No. 7(T), was isolated from a sediment sample collected from the alkaline, saline Lake Elmenteita located in the Kenyan Rift Valley. The optimal growth for the strain was found to be at temperature 30-35 °C, at pH 8.

View Article and Find Full Text PDF

A red-pigmented, Gram-reaction-negative, aerobic bacterial strain, designated No.164(T), was isolated from sediment sample from the alkaline Lake Elmenteita located in the Kenyan Rift Valley. Results of 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus Belliella, with the highest sequence similarity (97 %) to Belliella pelovolcani DSM 46698(T).

View Article and Find Full Text PDF

The efficacy of aqueous and emulsifiable formulations of the fungus Metarhizium anisopliae isolate ICIPE78 was evaluated on the population density of Tetranychus urticae infesting common bean plants under screenhouse and field conditions. Synthetic acaricide abamectin was included as a check. Bean plants were artificially infested with T.

View Article and Find Full Text PDF

Twenty-three isolates of Metarhizium anisopliae (Metschnikoff) Sokorin and three isolates of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales: Clavicipitaceae) were assessed for their virulence against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Based on the screening results, nine isolates of M. anisopliae and two isolates of B.

View Article and Find Full Text PDF

The intestinal tracts of termites host a wide variety of microbial symbionts, which have been implicated in degradative processes. In this study, a fungus-cultivating termite, Macrotermes michaelseni was found to harbor 2.2 x 10(6) bacterial cells per ml of gut homogenates capable of degrading benzoic acid.

View Article and Find Full Text PDF