The recent COVID-19 emergency has led to an impressive increase in the production of pharmaceutical vials. This has led to a parallel increase in the amounts of waste glass; manufacturers typically recover material from faulty containers by crushing, giving origin to an unrecyclable fraction. Coarse fragments are effectively reused as feedstock for glass melting; on the contrary, fine powders (<100 microns), contaminated by metal and ceramic particles due to the same crushing operations, are landfilled.
View Article and Find Full Text PDFAlkali-activated materials are gaining much interest due to their outstanding performance, including their great resistance to chemical corrosion, good thermal characteristics, and ability to valorise industrial waste materials. Reusing waste glasses in creating alkali-activated materials appears to be a viable option for more effective solid waste utilisation and lower-cost products. However, very little research has been conducted on the suitability of waste glass as a prime precursor for alkali activation.
View Article and Find Full Text PDFNovel and eco-friendly solutions are extensively needed for wastewater treatment. This work capitalizes on the combination of waste vitrification and additive manufacturing to produce an efficient photocatalyst for the specific purpose. Fine powders of waste-derived glass, containing Fe3O4 inclusions, by simple suspension (for a solid loading of 65 wt %) in alkaline solution (5 M NaOH), were transformed into pastes for direct ink writing.
View Article and Find Full Text PDFSphene is an innovative bone graft material. The aim of this study was to investigate and compare the physicochemical and biological properties of Bio-Oss® (BO) and in-lab synthesized and processed sphene granules. BO granules of 1000-2000 μm (BO-L), 250-1000 μm (BO-S) and 100-200 μm (BO-p) for derived granules, and corresponding groups of sphene granules obtained from 3D printed blocks (SB-L, SB-S, SB-p) and foams (SF-L, SF-S and SF-p) were investigated.
View Article and Find Full Text PDFHardystonite-based (HT) bioceramic foams were easily obtained via thermal treatment of silicone resins and reactive oxide fillers in air. By using a commercial silicone, incorporating strontium oxide and magnesium oxide precursors (as well as CaO and ZnO), and treating it at 1100 °C, a complex solid solution (CaSrZnMgSiO) that has superior biocompatibility and bioactivity properties compared to pure hardystonite (CaZnSiO) can be obtained. Proteolytic-resistant adhesive peptide mapped on vitronectin (D2HVP), was selectively grafted to Sr/Mg-doped HT foams using two different strategies.
View Article and Find Full Text PDFMaterial extrusion additive manufacturing enables us to combine more materials in the same nozzle during the deposition process. This technology, called material coextrusion, generates an expanded range of material properties, which can gradually change in the design domain, ensuring blending or higher bonding/interlocking among the different materials. To exploit the opportunities offered by these technologies, it is necessary to know the behavior of the combined materials according to the materials fractions.
View Article and Find Full Text PDF'Silica-defective glasses', combined with a silicone binder, have been already shown as a promising solution for the manufacturing of glass-ceramics with complex geometries. A fundamental advantage is the fact that, after holding glass powders together from room temperature up to the firing temperature, the binder does not completely disappear. More precisely, it converts into silica when heat-treated in air.
View Article and Find Full Text PDFAdditive manufacturing (AM) technologies enable the fabrication of objects with complex geometries in much simpler ways than conventional shaping methods. With the fabrication of recyclable filters for contaminated waters, the present work aims at exploiting such features as an opportunity to reuse glass from discarded pharmaceutical containers. Masked stereolithography-printed scaffolds were first heat-treated at relatively low temperatures (680 and 730 °C for 1 h) and then functionalized by alkali activation, with the formation of zeolite and sodium carbonate phases, which worked as additional adsorbing centers.
View Article and Find Full Text PDFDirect-Ink-Writing (or robocasting) is a subset of extrusion-based additive manufacturing techniques that has grown significantly in recent years to design simple to complex ceramic structures. Robocasting, relies on the use of high-concentration powder pastes, also known as inks. A successful optimization of ink rheology and formulation constitutes the major key factor to ensure printability for the fabrication of self-supporting ceramic structures with a very precise dimensional resolution.
View Article and Find Full Text PDFThe present COVID-19 emergency has dramatically increased the demand for pharmaceutical containers, especially vials. End-of-life containers, however, cannot be easily recycled in the manufacturing of new articles. This paper presents some strategies for upcycling of pharmaceutical glass into various porous ceramics.
View Article and Find Full Text PDFThe present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, flame synthesized glass microbeads with 10 wt% of silicone resins were utilized to fabricate green scaffolds, later converted into targeted bioceramic phase by firing at 1100 °C in air.
View Article and Find Full Text PDFSilicone resins, filled with phosphates and other oxide fillers, yield upon firing in air at 1100 °C, a product resembling Biosilicate glass-ceramics, one of the most promising systems for tissue engineering applications. The process requires no preliminary synthesis of parent glass, and the polymer route enables the application of direct ink writing (DIW) of silicone-based mixtures, for the manufacturing of reticulated scaffolds at room temperature. The thermal treatment is later applied for the conversion into ceramic scaffolds.
View Article and Find Full Text PDFAdditive manufacturing technologies, compared to conventional shaping methods, offer great opportunities in design versatility, for the manufacturing of highly porous ceramic components. However, the application to glass powders, later subjected to viscous flow sintering, involves significant challenges, especially in shape retention and in the achievement of a substantial degree of translucency in the final products. The present paper disclosed the potential of glass recovered from liquid crystal displays (LCD) for the manufacturing of highly porous scaffolds by direct ink writing and masked stereolithography of fine powders mixed with suitable organic additives, and sintered at 950 °C, for 1-1.
View Article and Find Full Text PDFBiofunctionalization was investigated for polymers and metals considering their scarce integration ability. On the contrary few studies dealt with ceramic biofunctionalization because the bioactive and bioresorbable surfaces of ceramics are able to positively interact with biological environment. In this study the cell-response improvement on biofunctionalized wollastonite and diopside-based scaffolds was demonstrated.
View Article and Find Full Text PDFTo combat insect pests and vectors that are responsible for high losses in food and lives, insecticide discovery is of top priority. This study aimed to synthesize, characterize and investigate the insecticidal activity of 1,3,4-oxadiazole derivatives grafted on chitosan (CS) and modified polymethyl methacrylate (PMMA). 5-(pyridin-3-yl)-1,3,4-oxadiazole-2-thiol and 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol were respectively reacted with ethylchloroacetate and methyl-2-choloroacetoacetate.
View Article and Find Full Text PDFCarbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR.
View Article and Find Full Text PDFInt J Biol Macromol
December 2020
Biogenic bioceramics scaffolds are receiving considerable attention for bone restoration applications. Compared with scaffolds of chemical origin, biogenic scaffolds exhibit greater biocompatibility and enhanced bioactive features. In the present study, porous biogenic hydroxyapatite (bHA) was prepared via a polymeric infiltration route and was subsequently coated with alginate to produce alginate/biogenic hydroxyapatite (Alg/bHA) composites.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2020
Highly porous sodium geopolymer structures were successfully produced through the chemical direct foaming approach at ambient temperature. The impact of the thermal treatment, as well as the influence of various additions of hydrogen peroxide, as a foaming agent, on the porosity, microstructure and mechanical characteristics of the produced geopolymers was investigated. The evaluation of bioactivity was carried out by assessing the formation of an apatite layer on the samples' surface, using scanning electronic microscopy and inductively coupled plasma spectrometry for the simulated body fluid solution, in which the geopolymer samples were kept up to 28 days.
View Article and Find Full Text PDFSilica-based ceramics have been proposed for coating purposes to enhance dental and orthopedic titanium (Ti) implant bioactivity. The aim of this study was to investigate the influence of sphene-based bioceramic (CaO.TiO.
View Article and Find Full Text PDFHighly porous bioceramics, based on a complex hardystonite solid solution, were developed from silicone resins and micro-sized oxide fillers fired in air at 950 °C. Besides CaO, SrO, MgO, and ZnO precursors, and the commercial embedded silicone resins, calcium borate was essential in providing the liquid phase upon firing and favouring the formation of an unprecedented hardystonite solid solution, corresponding to the formula (CaSr)(ZnMgSi) (SiB)O. Silicone-filler mixtures could be used in the form of thick pastes for direct ink writing of reticulated scaffolds or for direct foaming.
View Article and Find Full Text PDFMost materials for bone tissue engineering are in form of highly porous open-celled components (porosity >70%) developed by means of an adequate coupling of formulations and manufacturing technologies. This paper is dedicated to porous components from BGMS10 bioactive glass, originally designed to undergo viscous flow sintering without crystallization, which is generally known to degrade the bioactivity of 45S5 bioglass. The adopted manufacturing technologies were specifically conceived to avoid any contamination and give excellent control on the microstructures by simple operations.
View Article and Find Full Text PDFThe overall success and long-term life of the medical implants are decisively based on the convenient osseointegration at the hosting tissue-implant interface. Therefore, various surface modifications and different coating approaches have been utilized to the implants to enhance the bone formation and speed up the interaction with the surrounding hosting tissues, thereby enabling the successful fixation of implants. In this review, we will briefly present the main metallic implants and discuss their biocompatibility and osseointegration ability depending on their chemical and mechanical properties.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2019
Ti6Al4V components, for biomedical and aerospace sectors, are receiving a great interest especially after the advent of additive manufacturing technologies. The most used techniques are Selective Laser Sintering (SLS), Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In the current research, we developed 3D-printed Ti6Al4V scaffolds by Direct Ink Writing (DIW) technology.
View Article and Find Full Text PDFTitanium implant surface modifications have been widely investigated to favor the process of osseointegration. The present work aimed to evaluate the effect of sphene (CaTiSiO₅) biocoating, on titanium substrates, on the in vitro osteogenic differentiation of Human Adipose-Derived Stem Cells (hADSCs). Sphene bioceramic coatings were prepared using preceramic polymers and nano-sized active fillers and deposited by spray coating.
View Article and Find Full Text PDFCa-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900-1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70-100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity.
View Article and Find Full Text PDF