Publications by authors named "Hamad Said"

We have studied the clusters involved in the initial stages of nucleation of Zeolitic Imidazolate Frameworks, employing a wide range of computational techniques. In the pre-nucleating solution, the prevalent cluster is the ZnIm cluster (formed by a zinc cation, Zn, and four imidazolate anions, Im), although clusters such as ZnIm, ZnIm, ZnIm, ZnIm, ZnIm, or ZnIm have energies that are not much higher, so they would also be present in solution at appreciable quantities. All these species, except ZnIm, have a tetrahedrally coordinated Zn cation.

View Article and Find Full Text PDF

We demonstrate for the first time the potential of zeolitic-imidazolate framework-8 nanoparticles to be incorporated within a renal scaffold while retaining their ability to remove uremic toxins (mainly hydrophobic toxins like -cresol) under flow conditions. This work may pave the way for the future development of novel adsorbents for dialysis and/or artificial kidneys.

View Article and Find Full Text PDF

Ethylene oxide is one of the most important raw materials in the chemical industry, with an annual production close to 35 million metric tons. Despite its importance, to date, no metal has been found that can compete with the original silver bulk material catalyst discovered in 1931. Recently, a few copper and copper-silver based nanostructures have demonstrated remarkable selectivity and activity, especially when coupled with an industrial chlorine promoter.

View Article and Find Full Text PDF

This study examines the influence of COVID-19 on unpaid leave, the direct impacts of psychological contract breach on organizational distrust and turnover intention, and their indirect impact through emotional exhaustion. The study used partial least squares to analyze the data set of 238 questionnaires from hospitality establishments. Results indicate a significant direct positive impact of psychological contract breach on organizational distrust and favorable indirect effects through emotional exhaustion.

View Article and Find Full Text PDF

Computer simulations of alloys' properties often require calculations in a large space of configurations in a supercell of the crystal structure. A common approach is to map density functional theory results into a simplified interaction model using so-called cluster expansions, which are linear on the cluster correlation functions. Alternative descriptors have not been sufficiently explored so far.

View Article and Find Full Text PDF

We study the adsorption performance of metal-organic frameworks (MOFs) impregnated of ionic liquids (ILs). To this aim we calculated adsorption and diffusion of light gases (CO, CH, N) and their mixtures in hybrid composites using molecular simulations. The hybrid composites consist of 1-ethyl-3-methylimidazolium thiocyanate impregnated in IRMOF-1, HMOF-1, MIL-47, and MOF-1.

View Article and Find Full Text PDF

The development of new interatomic potentials to model metallic systems is a difficult task, due in part to the dependence between the parameters that describe the electron density and the short-range interactions. Parameter search methods are prone to false convergence. To solve this problem, we have developed a methodology for obtaining the electron density parameters independently of the short-range interactions, so that physically sound parameters can be obtained to describe the electron density, after which the short-range parameters can be fitted, thus reducing the complexity of the process and yielding better interatomic potentials.

View Article and Find Full Text PDF

Among many other applications, room-temperature ionic liquids (ILs) are used as electrolytes for storage and energy-conversion devices. In this work, we investigate, at the microscopic level, the structural and dynamical properties of 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide [C PYR] [Tf N] IL-based electrolytes for metal-ion batteries. We carried out molecular dynamics simulations of electrolytes mainly composed of [C PYR] [Tf N] IL with the addition of M -[Tf N] metal salts (M=Li , Na , Ni , Zn , Co , Cd , and Al , n=1, 2, and 3) dissolved in the IL.

View Article and Find Full Text PDF

The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations.

View Article and Find Full Text PDF

Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application.

View Article and Find Full Text PDF

Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (M ) on the electrochemical behavior of oxygen.

View Article and Find Full Text PDF

Nonactin and its analogs constitute a central class of macrocycles with an antibiotic activity closely related to their selective ionophoric behavior. In this study, we apply experimental and computational methods to revisit the specificity of cation binding and transport by three nactin variants differing in structural properties, such as the position of the ester linkages, the nature of the side groups, or the flexibility of the backbone. On the one hand, electrospray ionization mass spectrometry and infrared spectroscopy are employed to expose the selectivity of the liquid-liquid (water-chloroform) extraction of alkali cations by nonactin and to demonstrate that the cation complexes are partially hydrated in the organic phase.

View Article and Find Full Text PDF

Tuning the electronic structure of metal-organic frameworks is the key to extending their functionality to the photocatalytic conversion of absorbed gases. Herein we discuss how the band edge positions in zeolitic imidazolate frameworks (ZIFs) can be tuned by mixing different imidazole-based linkers within the same structure. We present the band alignment for a number of known and hypothetical Zn-based ZIFs with respect to the vacuum level.

View Article and Find Full Text PDF

Incorporation of germanium in zeolites is well known to confer static flexibility to their framework, by stabilizing the formation of small rings. In this work, we show that the flexibility associated to Ge atoms in zeolites goes beyond this static effect, manifesting also a clear dynamic nature, in the sense that it leads to enhanced molecular diffusion. Our study combines experimental and theoretical methods providing evidence for this effect, which has not been described previously, as well as a rationalization for it, based on atomistic grounds.

View Article and Find Full Text PDF

Compositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure.

View Article and Find Full Text PDF

To find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families.

View Article and Find Full Text PDF

The understanding of supramolecular recognition in room-temperature ionic liquids (RTILs) is key to develop the full potential of these materials. In this work, we provide insights into the selectivity of the binding of alkali metal cations by standard cyclodextrin and calixarene macrocycles in RTILs. A direct laser desorption/ionization mass spectrometry approach is employed to determine the relative abundances of the inclusion complexes formed through competitive binding in RTIL solutions.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers investigated how UV irradiation can preactivate TiO2 and ITO surfaces, improving the absorption of organic molecules through low-pressure evaporation.
  • - The deposition of organic molecules on these oxides was monitored using various techniques (SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy) to study the resulting patterns of organic nanowires.
  • - The study also utilized X-ray photoelectron spectroscopy and molecular dynamics simulations to clarify the mechanisms of enhanced adsorption, and examined the creation of hybrid organic/inorganic semiconductors via controlled sublimation on mesoporous TiO2.
View Article and Find Full Text PDF

The thermostructural properties of Ni-Cr materials, as bulk and nanoparticle (NP) systems, have been predicted with a newly developed interatomic potential, for Ni/Cr ratios from 100/0 to 60/40. The potential, which has been fitted using experimental data and further validated using Density Functional Theory (DFT), describes correctly the variation with temperature of lattice parameters and the coefficient of thermal expansion, from 100 K to 1000 K. Using this potential, we have performed Molecular Dynamics (MD) simulations on bulk Ni-Cr alloys of various compositions, for which no experimental data are available.

View Article and Find Full Text PDF

Background: Mobilizing hematopoietic stem cells may be a promising intervention for the treatment of idiopathic dilated cardiomyopathy (IDCM) in infant and children. So the aim of the work is to evaluate the efficacy of granulocyte-colony stimulating factor (G-CSF) as a therapeutic modality in pediatric IDCM.

Methods: A randomized clinical trial was conducted on 40 pediatric patients with IDCM.

View Article and Find Full Text PDF

The elucidation of the structural requirements for molecular recognition by the crown ether (18-crown-6)-2,3,11,12-tetracarboxylic acid (18c6H(4)) and its cationic complexes constitutes a topic of current fundamental and practical interest in catalysis and analytical sciences. The flexibility of the central ether ring and its four carboxyl side arms poses important challenges to experimental and theoretical approaches. In this study, infrared action vibrational spectroscopy and quantum mechanical computations are employed to characterize the conformational structure of the isolated gas phase complex formed by the 18c6H(4) host with NH(4)(+) as guest.

View Article and Find Full Text PDF

We have used interatomic potential-based simulations to study the removal of carbon tetrachloride from air at 298 K, using Cu-BTC metal organic framework. We have developed new sets of Lennard-Jones parameters that accurately describe the vapour-liquid equilibrium curves of carbon tetrachloride and the main components from air (oxygen, nitrogen, and argon). Using these parameters we performed Monte Carlo simulations for the following systems: (a) single component adsorption of carbon tetrachloride, oxygen, nitrogen, and argon molecules, (b) binary Ar/CCl(4), O(2)/CCl(4), and N(2)/CCl(4) mixtures with bulk gas compositions 99 : 1 and 99.

View Article and Find Full Text PDF

The complexes formed by crown ethers with hydronium and ammonium cations are of key relevance for the understanding of their supramolecular behavior in protic solvents. In this work, the complexes of the 15-crown-5 (15c5) and 18-crown-6 (18c6) ethers with H₃O⁺ and NH₄⁺ and their deuterated variants are investigated under isolated conditions. The study employs infrared multiple photon dissociation (IRMPD) vibrational spectroscopy and DFT B3LYP/6-31++G(d,p) calculations for conformational assignment.

View Article and Find Full Text PDF

The performance of Cu-BTC metal organic framework for carbon tetrachloride removal from air has been studied using molecular simulations. According to our results, this material shows extremely high adsorption selectivity in favour of carbon tetrachloride. We demonstrate that this selectivity can be further enhanced by selective blockage of the framework.

View Article and Find Full Text PDF

The flexibility of polymer backbones constitutes one key aspect in their molecular recognition properties. This investigation characterizes the structure of the gas-phase complexes formed by the cyclic and linear polyethers with the heavier alkali metal cations. In particular, the cyclic 15-crown-5 ether (15c5), (OCH(2)CH(2))(5), and the polyethylene glycol linear chains PEG4 and PEG9, H(OCH(2)CH(2))(n=4,9)OH, are considered.

View Article and Find Full Text PDF