Brain connectivity arises from interactions across biophysical scales, ranging from molecular to cellular to anatomical to network level. To date, there has been little progress toward integrated analysis across these scales. To bridge this gap, from a unique cohort of 98 individuals, we collected antemortem neuroimaging and genetic data, as well as postmortem dendritic spine morphometric, proteomic and gene expression data from the superior frontal and inferior temporal gyri.
View Article and Find Full Text PDFEpisodic memory in older adults is varied and perceived to rely on numbers of synapses or dendritic spines. We analyzed 2157 neurons among 128 older individuals from the Religious Orders Study and Rush Memory and Aging Project. Analysis of 55,521 individual dendritic spines by least absolute shrinkage and selection operator regression and nested model cross-validation revealed that the dendritic spine head diameter in the temporal cortex, but not the premotor cortex, improved the prediction of episodic memory performance in models containing β amyloid plaque scores, neurofibrillary tangle pathology, and sex.
View Article and Find Full Text PDFIntroduction: Current guidelines for double contrast barium esophagography studies (BAS) suggest that patients should be nil per os (NPO) prior to completing BAS for optimal esophageal coating, although the time required varies between practices and institutions. It is believed that consumption of food or water disrupts the ability for thick barium contrast to properly coat the esophageal mucosa. Exams that are rescheduled for this reason can lead to delays in care, without substantial evidence that NPO status truly affects esophageal mucosal coating for these exams with current barium mixtures.
View Article and Find Full Text PDFUnlabelled: Neuroimaging is commonly used to infer human brain connectivity, but those measurements are far-removed from the molecular underpinnings at synapses. To uncover the molecular basis of human brain connectivity, we analyzed a unique cohort of 98 individuals who provided neuroimaging and genetic data contemporaneous with dendritic spine morphometric, proteomic, and gene expression data from the superior frontal and inferior temporal gyri. Through cellular contextualization of the molecular data with dendritic spine morphology, we identified hundreds of proteins related to synapses, energy metabolism, and RNA processing that explain between-individual differences in functional connectivity and structural covariation.
View Article and Find Full Text PDFDendritic spines are small protrusions on dendrites that serve as the postsynaptic site of the majority of excitatory synapses. These structures are important for normal synaptic transmission, and alterations in their density and morphology have been documented in various disease states. Over 130 years ago, Ramón y Cajal used Golgi-stained tissue sections to study dendritic morphology.
View Article and Find Full Text PDFSynapse or dendritic spine loss is the strongest correlate of cognitive decline in Alzheimer's disease (AD), and neurofibrillary tangles (NFTs), but not amyloid-β plaques, associate more closely with transition to mild cognitive impairment. Yet, how dendritic spine architecture is affected by hyperphosphorylated tau is still an ongoing question. To address this, we combined cell and biochemical analyses of the Tau P301S mouse line (PS19).
View Article and Find Full Text PDF