Rotaviruses (RVs) are the leading cause of the acute viral gastroenteritis in young children and livestock animals worldwide. Although live attenuated vaccines have been applied to control RV infection for many years, the underlying mechanisms of RV attenuation following cell culture adaption are unknown. To study these mechanisms at the genomic level, we have sequenced and conducted a comparative analysis of two virulent human (Wa, G1P and M, G3P) and two virulent porcine (Gottfried, G4P and OSU, G5P) RV strains maintained in gnotobiotic piglets for 22, 11, 12 and 9 serial passages, respectively, with their attenuated counterparts serially passaged in MA-104 cell cultures for 25, 43, 54 and 43 passages, respectively.
View Article and Find Full Text PDFClinical laboratories have adopted next generation sequencing (NGS) as a gold standard for the diagnosis of hereditary disorders because of its analytic accuracy, high throughput, and potential for cost-effectiveness. We describe the implementation of a single broad-based NGS sequencing assay to meet the genetic testing needs at the University of Minnesota. A single hybrid capture library preparation was used for each test ordered, data was informatically blinded to clinically-ordered genes, and identified variants were reviewed and classified by genetic counselors and molecular pathologists.
View Article and Find Full Text PDFIn this study, we present an application paradigm in which an unsupervised machine learning approach is applied to the high-dimensional influenza genetic sequences to investigate whether vaccine is a driving force to the evolution of influenza virus. We first used a visualization approach to visualize the evolutionary paths of vaccine-controlled and non-vaccine-controlled influenza viruses in a low-dimensional space. We then quantified the evolutionary differences between their evolutionary trajectories through the use of within- and between-scatter matrices computation to provide the statistical confidence to support the visualization results.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) has been found throughout Europe and Asia, and has emerged in North and South America. A whole genome sequence was obtained from a paraffin-embedded tissue sample from the Instituto Colombiano Agropecuario (ICA), Colombia through Next Generation Sequencing techniques to further understand the evolution of PEDV.
View Article and Find Full Text PDFPorcine deltacoronavirus (PDCoV) was identified in multiple states across the United States (US) in 2014. In this study, we investigate the presence of PDCoV in diagnostic samples, which were further categorized by case identification (ID), and the association between occurrence, age, specimen and location between March and September 2014. Approximately, 7% of the case IDs submitted from the US were positive for PDCoV.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) has caused severe economic losses both recently in the United States (US) and historically throughout Europe and Asia. Traditionally, analysis of the spike gene has been used to determine phylogenetic relationships between PEDV strains. We determined the complete genomes of 93 PEDV field samples from US swine and analyzed the data in conjunction with complete genome sequences available from GenBank (n=126) to determine the most variable genomic areas.
View Article and Find Full Text PDFUnlabelled: The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains.
View Article and Find Full Text PDF