Publications by authors named "Hallenbeck J"

Ischemic stroke results in a loss of tissue homeostasis and integrity, the underlying pathobiology of which stems primarily from the depletion of cellular energy stores and perturbation of available metabolites . Hibernation in thirteen-lined ground squirrels (TLGS), , provides a natural model of ischemic tolerance as these mammals undergo prolonged periods of critically low cerebral blood flow without evidence of central nervous system (CNS) damage . Studying the complex interplay of genes and metabolites that unfolds during hibernation may provide novel insights into key regulators of cellular homeostasis during brain ischemia.

View Article and Find Full Text PDF

E-selectin plays an important role in mediating the rolling of leukocytes along and thus, the subsequent extravasation across activated endothelial cells comprising the microvasculature of the blood brain barrier (BBB). In multiple sclerosis (MS) and other inflammatory disorders of the central nervous system (CNS), the microvasculature is altered and immune cells infiltrate the brain and spinal cord contributing to damage, demyelination and ultimately disability. While mucosal administration is typically used to affect lymphocyte hyporesponsiveness or tolerance to suspect autoantigens, intranasal administration to E-selectin has previously been shown to protect against CNS inflammatory insults.

View Article and Find Full Text PDF

Brain ischaemia is a severe form of metabolic stress that activates a cascade of pathological events involving many signalling pathways. Modulation of these pathways is largely mediated by post-translational modifications (PTMs). Indeed, PTMs can rapidly modify pre-existing proteins by attaching chemical or polypeptide moieties to selected amino acid residues, altering their functions, stability, subcellular localizations, or interactions with other proteins.

View Article and Find Full Text PDF

We aimed to characterize peripheral blood gene expression profile of penumbra defined as MRI perfusion-diffusion mismatch (PD MM) in peripheral blood of patients with acute ischemic stroke. We studied 23 patients. Perfusion-diffusion mismatch volume was observed to be associated and significantly correlated with the expression of 34 genes including those related to inflammation, SUMOylation, and coagulation; while lipopolysaccharide inhibition was identified to be a candidate upstream regulator of these processes (-score -2.

View Article and Find Full Text PDF

Background: Neural stem cell (NSC)-based therapies hold great promise for treating diseases of the central nervous system (CNS). However, several fundamental problems still need to be overcome to fully exploit the clinical potential of NSC therapeutics. Chief among them is the limited survival of NSC grafts within hostile microenvironments.

View Article and Find Full Text PDF

Сonstitutive heterochromatin areas are revealed by differential staining as C-positive chromosomal regions. These C-positive bands may greatly vary by location, size, and nucleotide composition. CBG-banding is the most commonly used method to detect structural heterochromatin in animals.

View Article and Find Full Text PDF

Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage.

View Article and Find Full Text PDF

The intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to function and integrity of the epithelium. The small ubiquitin-like modifier (SUMO) conjugation pathway critically regulates adaptive responses to metabolic stress and is of particular significance in the gut, as inducible knockout of the SUMO-conjugating enzyme Ubc9 results in rapid intestinal epithelial disintegration.

View Article and Find Full Text PDF

Hibernating 13-lined ground squirrels (; TLGS) rank among the most brain hypoperfusion-tolerant mammals known. Herein we provide some evidence of cycling between an epithelial phenotype and a hybrid epithelial/mesenchymal (E/M) phenotype (partial EMT) within the brains of TLGS during each bout of hibernation torpor. During hibernation torpor, expression of the epithelial marker E-cadherin (E-CDH) was reduced, while expression of the well-known mesenchymal markers vimentin and Sox2 were increased.

View Article and Find Full Text PDF

Background And Purpose: MAGL (monoacylglycerol lipase) is an enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol and regulates the production of arachidonic acid and prostaglandins-substances that mediate tissue inflammatory response. Here, we have studied the effects of the selective MAGL inhibitors JZL184 and MJN110 and their underlying molecular mechanisms on 3 different experimental models of focal cerebral ischemia.

Methods: SHR (spontaneously hypertensive rats) and normotensive WKY (Wistar Kyoto) rats were subject to an intracortical injection of the potent vasoconstrictor endothelin-1, permanent occlusion of a distal segment of the middle cerebral artery via craniectomy, or transient occlusion of the middle cerebral artery by the intraluminal suture method.

View Article and Find Full Text PDF

Posttranslational modification by small ubiquitin-like modifier (SUMO) regulates myriad physiological processes within cells and has been demonstrated to be highly activated in murine brains after cerebral ischemia. Numerous and murine studies have demonstrated that this increased SUMO conjugation is an endogenous neuroprotective stress response that has potential in being leveraged to develop novel therapies for ischemic stroke. However, SUMO activation has not yet been studied in poststroke human brains, presenting a clear limitation in translating experimental successes in murine models to human patients.

View Article and Find Full Text PDF

Post-translational protein modification by small ubiquitin-like modifier (SUMO) regulates a myriad of homeostatic and stress responses. The SUMOylation pathway has been extensively studied in brain ischemia. Convincing evidence is now at hand to support the notion that a major increase in levels of SUMOylated proteins is capable of inducing tolerance to ischemic stress.

View Article and Find Full Text PDF

The development of novel neuroprotective treatments for acute stroke has been fraught with failures, which supports the view of ischemic brain damage as a highly complex multifactorial process. Post-translational modifications such as small ubiquitin-like modifier (SUMO)ylation have emerged as critical molecular regulatory mechanisms in states of both homeostasis and ischemic stress, as evidenced by our previous work. Accordingly, the clinical significance of the selective control of the global SUMOylation process has become apparent in studies of ischemic pathobiology and pathophysiology.

View Article and Find Full Text PDF
Article Synopsis
  • Cryptogenic strokes, making up 30-40% of all strokes, may be linked to inflammation, but there hasn't been enough experimental evidence to support this theory.
  • This study used a mouse model to show that a lack of TGF-β signaling in myeloid cells led to cerebrovascular inflammation and 100% incidence of stroke with severe neurological effects.
  • Findings suggest that TGF-β is crucial for vascular health, as stroke risks were influenced by diet and could be reduced through specific treatments like anti-TNF, metformin, and methotrexate.
View Article and Find Full Text PDF

Protein SUMOylation is a dynamic post-translational modification shown to be involved in a diverse set of physiologic processes throughout the cell. SUMOylation has also been shown to play a role in the pathobiology of myriad cancers, one of which is glioblastoma multiforme (GBM). As such, the clinical significance and therapeutic utility offered via the selective control of global SUMOylation is readily apparent.

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) pose a massive burden of disease and continue to be a leading cause of morbidity and mortality throughout the world. A major obstacle in developing effective treatments is the lack of comprehensive understanding of the underlying mechanisms that mediate tissue damage and recovery after TBI. As such, our work aims to highlight the development of a novel experimental platform capable of fully characterizing the underlying pathobiology that unfolds after TBI.

View Article and Find Full Text PDF

Ischemic stroke continues to be a leading cause of morbidity and mortality throughout the world. To protect and/or repair the ischemic brain, a multitiered approach may be centered on neural stem cell (NSC) transplantation. Transplanted NSCs exert beneficial effects not only via structural replacement, but also via immunomodulatory and/or neurotrophic actions.

View Article and Find Full Text PDF

Hospital ethics committees (HECs) are typically charged with addressing ethical disputes, conflicts, and dilemmas that arise in the course of patient care. HECs are not widely viewed as having a therapeutic role for health care professionals who experience psychological distress or anticipatory grief in the course of discharging professional duties. A case is presented in which an ethics consultation was requested, chiefly, to secure emotional support for health care professionals who had been asked by a patient to discontinue life-sustaining treatments.

View Article and Find Full Text PDF

The putative neuroprotective properties of various flavonoids have long been reported. Among this class of chemicals, quercetin, a major flavone/flavonol naturally occurring in plants, deserves focused attention because of the myriad of beneficial effects observed in various in vitro and in vivo models of central nervous system damage/degeneration. However, the mechanisms governing the beneficial outcomes mediated by quercetin remain to be elucidated.

View Article and Find Full Text PDF

The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family.

View Article and Find Full Text PDF

The immune system plays a fundamental role in both the development and pathobiology of stroke. Inflammasomes are multiprotein complexes that have come to be recognized as critical players in the inflammation that ultimately contributes to stroke severity. Inflammasomes recognize microbial and host-derived danger signals and activate caspase-1, which in turn controls the production of the pro-inflammatory cytokine IL-1β.

View Article and Find Full Text PDF

Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress.

View Article and Find Full Text PDF

Aims: Endothelial progenitor cells (EPCs) are markers of vascular repair. Increased numbers of circulating endothelial cells (ECs) are associated with endothelial damage.

Materials & Methods: We enumerated EPC-EC by using Enrichment kit with addition of anti-human CD146-PE/Cy7 from peripheral blood mononuclear cell (PBMC) isolated either by red blood cell (RBC) lysing solution or by Ficoll centrifugation, and from fresh and preserved samples.

View Article and Find Full Text PDF