Publications by authors named "Hallberg R"

Microbial mats or biofilms are known to colonize a wide range of substrates in aquatic environments. These dense benthic communities efficiently recycle nutrients and often exhibit high tolerance to environmental stressors, characteristics that enable them to inhabit harsh ecological niches. In some special cases, floating biofilms form at the air-water interface residing on top of a hydrophobic microlayer.

View Article and Find Full Text PDF

Controllable particle assisted growth (PAG) of III-V nanowires is today almost exclusively done with Au, Ga or In nanoparticles, whereas other metals often yield nanowires with uncontrolled growth directions. To improve the control of the initial growth direction in PAG, independent of choice of metal, we propose to initiate nanowire growth from a group-III-rich foreign metal particle. For III-V nanowire growth, the group III concentration of the particle can be made to increase or decrease with the relative supply of group III and group V material, which can be used to promote the liquid phase that is necessary for vapor-liquid-solid growth.

View Article and Find Full Text PDF

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) has been implicated in cell cycle progression and mitosis; however, the complexity of PP2A regulation via multiple B subunits makes its functional characterization a significant challenge. The human adenovirus protein E4orf4 has been found to induce both high Cdk1 activity and the accumulation of cells in G(2)/M in both mammalian and yeast cells, effects which are largely dependent on the B55/Cdc55 regulatory subunit of PP2A. Thus, E4orf4 represents a unique means by which the function of a specific form of PP2A can be delineated in vivo.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) regulates a broad spectrum of cellular processes. The enzyme is, in fact, largely a collection of varied heterotrimeric species composed of a catalytic (C) subunit and regulatory (B-type) subunit bound together by a structural (A) subunit. One important feature of the C subunit is that its carboxy-terminus can be modified by phosphorylation and methylation.

View Article and Find Full Text PDF

Five indigenous fungal strains with characteristics of the genus Penicillium capable of degrading and utilizing pyrene, as sole carbon source were isolated from soil of a former gas work site. Two strains were identified as Penicillium ochrochloron. One of the strains was able to degrade a maximum of 75% of 50 mg l(-1) pyrene at 22 degrees C during 28 days of incubation.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) catalytic subunit can be covalently modified at its carboxy terminus by phosphorylation or carboxymethylation. Determining the effects of these covalent modifications on the relative amounts and functions of different PP2A heterotrimers is essential to understanding how these modifications regulate PP2A-controlled cellular processes. In this study we have validated and used a novel in vivo assay for assessing PP2A heterotrimer formation in Saccharomyces cerevisiae: the measurement of heterotrimer-dependent localization of green fluorescent protein-PP2A subunits.

View Article and Find Full Text PDF

Septins are GTPases involved in cytokinesis. In yeast, they form a ring at the cleavage site. Using FRAP, we show that septins are mobile within the ring at bud emergence and telophase and are immobile during S, G2, and M phases.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) regulates a broad spectrum of cellular processes. This enzyme is a collection of varied heterotrimeric complexes, each composed of a catalytic (C) and regulatory (B) subunit bound together by a structural (A) subunit. To understand the cell cycle dynamics of this enzyme population, we carried out quantitative and qualitative analyses of the PP2A subunits of Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Indigenous fungi isolated from soil of a former gasworks site were investigated in submerged cultures with pyrene as the sole carbon source. Five fungal strains capable of degrading pyrene included one strain of Trichoderma harzianum and four strains with characteristics of the genus Penicillium. These are identified as Penicillium simplicissimum, Penicillium janthinellum, Penicillium funiculosum and Penicillium terrestre.

View Article and Find Full Text PDF

In Schizosaccharomyces pombe, the initiation of cytokinesis is regulated by a septation initiation network (SIN). We previously reported that deletion of par1 and par2, two S. pombe genes encoding B' regulatory subunits of protein phosphatase 2A, causes a multiseptation phenotype, very similar to that seen in hyperactive SIN mutants.

View Article and Find Full Text PDF

CDC55 encodes a Saccharomyces cerevisiae protein phosphatase 2A (PP2A) regulatory subunit. cdc55-null cells growing at low temperature exhibit a failure of cytokinesis and produce abnormally elongated buds, but cdc55-null cells producing the cyclin-dependent kinase Cdc28-Y19F, which is unable to be inhibited by Y19 phosphorylation, show a loss of the abnormal morphology. Furthermore, cdc55-null cells exhibit a hyperphosphorylation of Y19.

View Article and Find Full Text PDF

The segregating unit of mtDNA is a protein-DNA complex called the nucleoid. In an effort to understand how nucleoid proteins contribute to mtDNA organization and inheritance, we have developed an in organello formaldehyde crosslinking procedure to identify proteins associated with mtDNA. Using highly purified mitochondria, we observed a time-dependent crosslinking of protein to mtDNA as determined by sedimentation through isopycnic cesium chloride gradients.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases found in eukaryotic cells. We cloned two genes, par1(+) and par2(+), encoding distinct B' subunits of PP2A in fission yeast. They share 52% identity at the amino acid sequence level.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae gene RTS1 encodes a protein homologous to a variable B-type regulatory subunit of the mammalian heterotrimeric serine/threonine protein phosphatase 2A (PP2A). We present evidence showing that Rts1p assembles into similar heterotrimeric complexes in yeast. Strains in which RTS1 has been disrupted are temperature sensitive (ts) for growth, are hypersensitive to ethanol, are unable to grow with glycerol as their only carbon source, and accumulate at nonpermissive temperatures predominantly as large-budded cells with a 2N DNA content and a nondivided nucleus.

View Article and Find Full Text PDF

While protein synthesis is rapidly inactivated in Saccharomyces cerevisiae, cells shifted from log growth at 30 degrees C to 43 degrees C, a 1-h 37 degrees C treatment given to cells just prior to the shift to 43 degrees C partially blocks this inactivation. By contrast, such a pre-heat shock treatment has no protective effect on translational inactivation at 45 degrees C or higher. Cells allowed to approach stationary phase not only develop an enhanced thermotolerance relative to log cells but also exhibit a pronounced resistance to inactivation of protein synthesis at 43 degrees C as well as at 45 degrees C.

View Article and Find Full Text PDF

Mounting evidence suggests that heat-shock proteins (HSPs) play a vital role in enhancing survival at high temperature. There is, however, considerable variation in patterns of HSP production among species, and even among and within individuals of a species. It is not known why this variation exists and to what extent variation in HSPs among organisms might be related to differences in thermotolerance.

View Article and Find Full Text PDF

We identified and isolated a Saccharomyces cerevisiae gene which, when overexpressed, suppressed the temperature-sensitive phenotype of cells expressing a mutant allele of the gene encoding the mitochondrial chaperonin, Hsp60. This gene, SCS1 (suppressor of chaperonin sixty-1), encodes a 757-amino-acid protein of as yet unknown function which, nonetheless, has human, rice, and Caenorhabditis elegans homologs with high degrees (ca. 60%) of amino acid sequence identity.

View Article and Find Full Text PDF

Thermotolerance is an inducible state that endows cells with an enhanced resistance to thermal killing. Heat shock proteins are believed, and in a few instances have been shown, to be the agents conferring this resistance. The role of a small cytoplasmic RNA (G8 RNA) in developing thermotolerance in Tetrahymena thermophila was investigated by creating a strain devoid of all functional G8 genes.

View Article and Find Full Text PDF

We report on a girl presenting with facial dysmorphic features and breathing difficulties upon birth. She was hypotonic, developed a metabolic acidosis, and died two days old of heart failure. Post-mortem examination revealed abnormalities of brain, lungs, heart and liver.

View Article and Find Full Text PDF

We have created yeast strains in which the mitochondrial chaperonin, hsp60, can be either physically depleted or functionally inactivated. Cells completely depleted of hsp60 stop growing but retain for awhile the capacity to reaccumulate hsp60. While this newly made hsp60 is targeted to and processed correctly within the mitochondrion, assembly of a functional hsp60 complex does not occur.

View Article and Find Full Text PDF

The pathway by which cytochromes c1 and b2 reach the mitochondrial intermembrane space has been controversial. According to the "conservative sorting" hypothesis, these proteins are first imported across both outer and inner membranes into the matrix, and then are retranslocated across the inner membrane. Our data argue against this model: import intermediates of cytochromes c1 and b2 were found only outside the inner membrane; maturation of these proteins was independent of the matrix-localized hsp60 chaperone; and dihydrofolate reductase linked to the presequence of either cytochrome was imported to the intermembrane space in the absence of ATP.

View Article and Find Full Text PDF