Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies.
View Article and Find Full Text PDFA wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery.
View Article and Find Full Text PDFA putative haloalkane dehalogenase has been identified in a marine Rhodobacteraceae and subsequently cloned and over-expressed in Escherichia coli. The enzyme has highest activity towards the substrates 1,6-dichlorohexane, 1-bromooctane, 1,3-dibromopropane and 1-bromohexane. The crystal structures of the enzyme in the native and product bound forms reveal a large hydrophobic active site cavity.
View Article and Find Full Text PDFThe recombinant L-haloacid dehalogenase from the marine bacterium Psychromonas ingrahamii has been cloned and over-expressed in Escherichia coli. It shows activity towards monobromoacetic (100 %), monochloroacetic acid (62 %), S-chloropropionic acid (42 %), S-bromopropionic acid (31 %), dichloroacetic acid (28 %) and 2-chlorobutyric acid (10 %), respectively. The L-haloacid dehalogenase has highest activity towards substrates with shorter carbon chain lengths (≤ C3), without preference towards a chlorine or bromine at the α-carbon position.
View Article and Find Full Text PDFThe putative L-haloacid dehalogenase gene (DehRhb) from a marine Rhodobacteraceae family was cloned and overexpressed in Escherichia coli. The DehRhb protein was shown to be an L-haloacid dehalogenase with highest activity towards brominated substrates with short carbon chains (≤ C3). The optimal temperature for enzyme activity was 55 °C, and the Vmax and Km were 1.
View Article and Find Full Text PDF