Active packaging is becoming increasingly significant in the food industry. The present study aims to explore the use of Seed Extract (SCSE) as an antioxidant and chitosan as an antibacterial agent to produce active packaging based on polylactic acid (PLA), poly ε-caprolactone (PCL), and polyethylene glycol (PEG) blend. Using advanced characterization techniques, active packaging (PLA/PCL/PEG) incorporating with 0.
View Article and Find Full Text PDFChanges in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life.
View Article and Find Full Text PDFHydrogels are hydrophilic polymer materials that can swell but are insoluble in water. Hydrogels can be synthesized with synthetic or natural polymers, but natural polymers are preferred because they are similar to natural tissues, which can absorb a high water content, are biocompatible, and are biodegradable. The three-dimensional structure of the hydrogel affects its water insolubility and ability to maintain its shape.
View Article and Find Full Text PDFXerogels are advanced, functional, porous materials consisting of ambient, dried, cross-linked polymeric networks. They possess characteristics such as high porosity, great surface area, and an affordable preparation route; they can be prepared from several organic and inorganic precursors for numerous applications. Owing to their desired properties, these materials were found to be suitable for several medical and biomedical applications; the high drug-loading capacity of xerogels and their ability to maintain sustained drug release make them highly desirable for drug delivery applications.
View Article and Find Full Text PDFCellulose nanofibers (CNFs) are the most advanced bio-nanomaterial utilized in various applications due to their unique physical and structural properties, renewability, biodegradability, and biocompatibility. It has been isolated from diverse sources including plants as well as textile wastes using different isolation techniques, such as acid hydrolysis, high-intensity ultrasonication, and steam explosion process. Here, we planned to extract and isolate CNFs from carpet wastes using a supercritical carbon dioxide (Sc.
View Article and Find Full Text PDF