Publications by authors named "Halima Osman"

Myocardial stress and injury invariably promote remodeling of the cardiac tissue, which is associated with cardiomyocyte death and development of fibrosis. The fibrotic process is initially triggered by the differentiation of resident cardiac fibroblasts into myofibroblasts. These activated fibroblasts display increased proliferative capacity and secrete large amounts of extracellular matrix.

View Article and Find Full Text PDF

Cardiac stress initiates a pathological remodeling process that is associated with cardiomyocyte loss and fibrosis that ultimately leads to heart failure. In the injured heart, a pathologically elevated synthesis of reactive oxygen species (ROS) is the main driver of oxidative stress and consequent cardiomyocyte dysfunction and death. In this context, the cAMP-dependent protein kinase (PKA) plays a central role in regulating signaling pathways that protect the heart against ROS-induced cardiac damage.

View Article and Find Full Text PDF

Heart failure is a lethal disease that can develop after myocardial infarction, hypertension, or anticancer therapy. In the damaged heart, loss of function is mainly due to cardiomyocyte death and associated cardiac remodeling and fibrosis. In this context, A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that facilitate the spatiotemporal activation of the cyclic adenosine monophosphate (AMP)-dependent protein kinase (PKA) and other transduction enzymes involved in cardiac remodeling.

View Article and Find Full Text PDF

Uncontrolled activation of Rho signaling by RhoGEFs, in particular AKAP13 (Lbc) and its close homologs, is implicated in a number of human tumors with poor prognosis and resistance to therapy. Structure predictions and alanine scanning mutagenesis of Lbc identified a circumscribed hot region for RhoA recognition and activation. Virtual screening targeting that region led to the discovery of an inhibitor of Lbc-RhoA interaction inside cells.

View Article and Find Full Text PDF

This study was intended to determine the role played by peste des petits ruminants (PPR) in causing respiratory infections in camels and its association with other respiratory viruses. A total of 474 lung specimens showing pneumonia were collected from clinically healthy camels in slaughterhouses at five different areas in Sudan. Using immunocapture ELISA (IcELISA), 214 specimens (45.

View Article and Find Full Text PDF

Interest in peste des petits ruminants virus (PPRV) has been stimulated by recent changes in its host and geographic distribution. For this study, biological specimens were collected from camels, sheep, and goats clinically suspected of having PPRV infection in Sudan during 2000-2009 and from sheep soon after the first reported outbreaks in Morocco in 2008. Reverse transcription PCR analysis confirmed the wide distribution of PPRV throughout Sudan and spread of the virus in Morocco.

View Article and Find Full Text PDF