Publications by authors named "Halima Kerdjoudj"

Mineralized biological tissues rich in type I collagen (e.g., bone and dentin) exhibit complex anisotropic suprafibrillar organizations in which the organic and inorganic moieties are intimately coassembled over several length scales.

View Article and Find Full Text PDF

This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging.

View Article and Find Full Text PDF

The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms.

View Article and Find Full Text PDF

Perinatal derivatives have been proposed as adjunct therapeutic strategies or innovative treatments. Undoubtedly, perinatal derivatives can offer the opportunity and source material to isolate multipotent stem cells, but both maternal- and fetal-derived tissues can be processed and transformed into engineered tissues or advanced biomedical devices, whose potential remains to be fully elucidated. Promising preclinical and clinical results collected so far clearly foresee an escalation of such novel treatments.

View Article and Find Full Text PDF

Wharton's Jelly (WJ) has attracted significant interest in the field of tissue healing thanks to its biological properties, including antibacterial activity and immunomodulation. However, due to the fast degradation and poor mechanical behavior in biological environment, its application in bone regeneration is compromised. Here, we proposed to use genipin as an efficient cross-linking agent to significantly improve the elasticity and the enzymatical stability of the WJ matrix.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the potential of tuning the topography of textile surfaces for biomedical applications towards modified cell-substrate interactions.

Methods: For that purpose, a supercritical Nitrogen N jet was used to spray glass particles on multi-filament polyethylene terephthalate (PET) yarns and on woven fabrics. The influence of the jet projection parameters such as the jet pressure (P) and the standoff distance (SoD) on the roughness was investigated.

View Article and Find Full Text PDF

The last 18 years have brought an increasing interest in the therapeutic use of perinatal derivatives (PnD). Preclinical studies used to assess the potential of PnD therapy include a broad range of study designs. The COST SPRINT Action (CA17116) aims to provide systematic and comprehensive reviews of preclinical studies for the understanding of the therapeutic potential and mechanisms of PnD in diseases and injuries that benefit from PnD therapy.

View Article and Find Full Text PDF

Perinatal derivatives (PnD) are drawing growing interest among the scientific community as an unrestricted source of multipotent stem cells, secretome, and biological matrices. They are useful for the treatment of diseases that currently have limited or no effective therapeutic options, but they require the development of regenerative approaches. With this development, the question of regulation of donation, processing, and distribution has therefore become more important.

View Article and Find Full Text PDF

Infections, which interfere with bone regeneration, may be a critical issue to consider during the development of biomimetic material. Calcium phosphate (CaP) and type I collagen substrates, both suitable for bone-regeneration dedicated scaffolds, may favor bacterial adhesion. possesses adhesins that allow binding to CaP or collagen.

View Article and Find Full Text PDF

Medication-related osteonecrosis of the jaw (MRONJ) is a complication caused by anti-resorptive agents and anti-angiogenesis drugs. Since we wanted to write a protocol for a randomized clinical trial (RCT), we reviewed the literature for the essential information needed to estimate the size of the active patient population and measure the effects of therapeutics. At the same time, we designed a questionnaire intended for clinicians to collect detailed information about their practices.

View Article and Find Full Text PDF

Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both and .

View Article and Find Full Text PDF

Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues.

View Article and Find Full Text PDF

In craniofacial bone defects, the promotion of bone volume augmentation remains a challenge. Finding strategies for bone regeneration such as combining resorbable minerals with organic polymers would contribute to solving the bone volume roadblock. Here, dicalcium phosphate dihydrate, chitosan and hyaluronic acid were used to functionalize a bone-side collagen membrane.

View Article and Find Full Text PDF

Scaffolds can be defined as 3D architectures with specific features (surface properties, porosity, rigidity, biodegradability, etc.) that help cells to attach, proliferate, and to differentiate into specific lineage. For bone regeneration, rather high mechanical properties are required.

View Article and Find Full Text PDF
Article Synopsis
  • MRONJ is a serious complication linked to treatments like bisphosphonates and lacks established management guidelines, especially in advanced cases.
  • The human amniotic membrane (hAM) offers various healing benefits, such as low immunogenicity and properties that support tissue regeneration and reduce inflammation.
  • In a study with eight cancer patients suffering from stage 2-3 MRONJ, using cryopreserved hAM resulted in significant healing improvements, pain relief, and no adverse events, with 80% showing healing at the six-month follow-up.
View Article and Find Full Text PDF

Of all biologic matrices, decellularized tissues have emerged as a promising tool in the field of regenerative medicine. Few empirical clinical studies have shown that Wharton's jelly (WJ) of the human umbilical cord promotes wound closure and reduces wound-related infections. In this scope, we herein investigated whether decellularized (DC)-WJ could be used as an engineered biomaterial.

View Article and Find Full Text PDF

The present study aims to improve the interfacial bonding between hydroxyapatite particles (HAs) and polylactide (PLA) to enhance the mechanical performance and biocompatibility of bone implants based on HA/PLA. For this, one-shot surface functionalization of HA via plasma polymerization is developed. Taking advantage of acetylene plasma chemistry, the hydrophobicity of HA particles was finely tuned prior to their introduction into a PLA matrix via an extrusion process.

View Article and Find Full Text PDF

In this study, a simple method to immobilize chitosan on a poly(lactic acid) (PLA) surface was developed in a fast manner. The immobilization was realized in two steps. First, an atmospheric plasma (MWAP) torch was used to modify the PLA surface in less than 5 min in order to create enough activated sites toward the chitosan adhesion, followed by a direct dip coating to spread and immobilize chitosan on this MWAP-modified PLA surface.

View Article and Find Full Text PDF

Wharton's jelly (WJ) is a mucous connective tissue of the umbilical cord. It shows high healing capabilities, mainly attributed to the chemical composition and to the presence of stem cells, growth factors and peptides. Although WJ biological properties are well documented in vitro and in vivo, there is still a lack of mechanical data on this tissue, which is paramount for its use as a biomaterial for medical applications.

View Article and Find Full Text PDF

The influence of ultra-short laser modification on the surface morphology and possible chemical alteration of poly-lactic acid (PLA) matrix in respect to the optimization of cellular and antibacterial behavior were investigated in this study. Scanning electron microscopy (SEM) morphological examination of the processed PLA surface showed the formation of diverse hierarchical surface microstructures, generated by irradiation with a range of laser fluences (F) and scanning velocities (V) values. By controlling the laser parameters, diverse surface roughness can be achieved, thus influencing cellular dynamics.

View Article and Find Full Text PDF

Due to its intrinsic properties, there has been growing interest in human amniotic membrane (hAM) in recent years particularly for the treatment of ocular surface disorders and for wound healing. Herein, we investigate the potential use of hAM and amnion-chorion membrane (ACM) in oral surgery. Based on our analysis of the literature, it appears that their applications are very poorly defined.

View Article and Find Full Text PDF

Staphylococcus aureus and Cutibacterium acnes are involved in several tissue infections and can encounter mesenchymal stem cells (MSCs) during their role in tissue regenerative process. C. acnes and S.

View Article and Find Full Text PDF

Cariogenic () is implicated in the dental pulp necrosis but also in cardiovascular tissue infections. Herein, the purpose was to elucidate how human dental pulp derived stromal cells (DPSCs) react toward a direct interaction with . DPSCs were challenged with .

View Article and Find Full Text PDF

A multifunctional material system that kills bacteria and drives bone healing is urgently sought to improve bone prosthesis. Herein, the osteoinductive coating made of calcium phosphate/chitosan/hyaluronic acid, named Hybrid, was proposed as an antibacterial substrate for stromal cell adhesion. This Hybrid coating possesses a contact-killing effect reducing by 90% the viability of Gram-positive Staphylococcus aureus (S.

View Article and Find Full Text PDF