Publications by authors named "Halil T Eyyuboglu"

In this paper, we describe the details of different detection strategies of a communication system using Gaussian vortex beams. These are listed as (a) simultaneous transmission of actual data symbol and reference signals (no multiplexing), (b) transmission of data symbol and reference signals in a wavelength division multiplexed manner, and (c) transmission of data symbol and reference signals in a time-division multiplexed manner. The performance of each one is evaluated for strong turbulence regimes with the help of an appropriately arranged random phase screen setup.

View Article and Find Full Text PDF

We describe the details of an optical communication system using Gaussian vortex beams (GVBs). Our main focus will be on the detection strategy. The transmitter encodes the message symbols into the topological charges of the GVBs.

View Article and Find Full Text PDF

A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators.

View Article and Find Full Text PDF

This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.

View Article and Find Full Text PDF

Using the random phase screen approach, we carry out a simulation analysis of the probability of error performance of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams. In our scenario, these beams are intensity-modulated by the randomly generated binary symbols of an electrical message signal and then launched from the transmitter plane in equal powers. They propagate through a turbulent atmosphere modeled by a series of random phase screens.

View Article and Find Full Text PDF

We analyze the properties of Ince-Gaussian beams propagating in turbulent atmosphere. Due to analytic difficulties, this analysis is done with the aid of a random phase screen setup. Intensity profile, beam size, and the kurtosis parameter are evaluated against the changes in beam orders, propagation distance, and turbulence levels.

View Article and Find Full Text PDF

Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation.

View Article and Find Full Text PDF

In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power.

View Article and Find Full Text PDF

The scintillation index of a Gaussian Schell-model beam with twist phase (i.e., twisted GSM beam) in weak turbulent atmosphere is formulated with the help of a tensor method.

View Article and Find Full Text PDF

The analytical formula for the effective radius of curvature of radial Gaussian array beams propagating through atmospheric turbulence is derived, where coherent and incoherent beam combinations are considered. The influence of turbulence on the effective radius of curvature of radial Gaussian array beams is studied by using numerical calculation examples.

View Article and Find Full Text PDF

Analytical formula is derived for the M(2)-factor of coherent and partially coherent dark hollow beams (DHB) in turbulent atmosphere based on the extended Huygens-Fresnel integral and the second-order moments of the Wigner distribution function. Our numerical results show that the M(2)- factor of a DHB in turbulent atmosphere increases on propagation, which is much different from its invariant properties in free-space, and is mainly determined by the parameters of the beam and the atmosphere. The relative M(2)-factor of a DHB increases slower than that of Gaussian and flat-topped beams on propagation, which means a DHB is less affected by the atmospheric turbulence than Gaussian and flat-topped beams.

View Article and Find Full Text PDF

The propagation of an elegant Hermite-Gaussian beam (EHGB) in turbulent atmosphere is investigated. Analytical propagation formulae for the average intensity and effective beam size of an EHGB in turbulent atmosphere are derived based on the extended Huygens-Fresnel integral. The corresponding results of a standard Hermite-Gaussian beam (SHGB) in turbulent atmosphere are also derived for the convenience of comparison.

View Article and Find Full Text PDF

For an incidence composed of partially coherent multiple Gaussian beams, Huygens-Fresnel principle-based on-axis scintillation index is formulated in a weakly turbulent homogeneous horizontal atmospheric path. Our general formulation is applied to two examples of partially coherent annular and partially coherent flat-topped Gaussian beams. Compared to partially coherent single Gaussian beam scintillations, annular beam scintillations seem to possess higher values for all partial coherence levels, whereas flat-topped Gaussian beam intensity fluctuations are slightly larger, especially at lower coherence levels and at larger source sizes.

View Article and Find Full Text PDF

Propagations of coherent and partially coherent flat-topped beams through a focusing optical system are formulated. The radiation force on a Rayleigh dielectric sphere induced by focused coherent and partially coherent flat-topped beams is investigated theoretically. It is found that we can increase the transverse trapping range at the planes near the focal plane by increasing the flatness (i.

View Article and Find Full Text PDF

The scintillation index is formulated for modified Bessel-Gaussian beams propagating in weakly turbulent media. Numerical calculations applied directly to the derived triple integral show that, for off-axis positions, the modified Bessel-Gaussian beams of higher than zero order scintillate less than Gaussian beams at large input beam sizes and low beam orders with the increasing width parameter initially contributing positively to this phenomenon of less scintillation. As the beam order exceeds two, this advantage is diminished.

View Article and Find Full Text PDF

In order to analyze the effect of beam type on free space optical communication systems, bit error rate (BER) values versus signal-to-noise ratio (SNR) are calculated for zero order and higher order general beam types, namely for Gaussian, cos-Gaussian, cosh-Gaussian, and annular beams. BER analysis is based on optical scintillation using log-normal distribution for the intensity, which is valid in weak atmospheric turbulence. BERs for these beams are plotted under variations of propagation length, source size, wavelength of operation, and order of the beam.

View Article and Find Full Text PDF

On the basis of the unified theory of coherence and polarization, we investigate the behavior of the state of polarization of a stochastic electromagnetic beam in a Gaussian cavity. Formulations both in terms of Stokes parameters and in terms of polarization ellipse are given. We show that the state of polarization stabilizes, except in the case of a lossless cavity, after several passages between the mirrors, exhibiting monotonic or oscillatory behavior depending on the parameters of the resonator.

View Article and Find Full Text PDF

The interaction of an electromagnetic Gaussian Schell-model (EGSM) beam with a Gaussian cavity is analyzed. In particular, the evolution of the degree of polarization of the EGSM beam is investigated. The results show that the behavior of the degree of polarization depends on both the statistical properties of the source that generates the EGSM beam and the parameters of the cavity.

View Article and Find Full Text PDF

Propagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar.

View Article and Find Full Text PDF

The scintillation properties of astigmatic dark hollow beams (DHBs) in weak atmospheric turbulence were investigated in detail. An explicit expression for the on-axis scintillation index of an astigmatic DHB propagating in weak atmospheric turbulence was derived. It was found that the scintillation index value of an astigmatic DHB with suitable astigmatism (i.

View Article and Find Full Text PDF

Analytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e.

View Article and Find Full Text PDF

With the use of the general beam formulation, the modulus of the complex degree of coherence for partially coherent cosh-Gaussian, cos-Gaussian, Gaussian, annular and higher-order Gaussian optical beams is evaluated in atmospheric turbulence. For different propagation lengths in horizontal atmospheric links, the moduli of the complex degree of coherence at the source and receiver planes are examined when reference points are taken on the receiver axis and off-axis. In the on-axis case, it is observed that in propagation, the moduli of the complex degree of coherence are symmetrical and look like the intensity profile of the related coherent beam propagating in a turbulent atmosphere.

View Article and Find Full Text PDF

A tensor method is used to formulate the on-axis scintillation index for an elliptical Gaussian beam (EGB; astigmatic Gaussian beam) propagating in a weak turbulent atmosphere. Variations of the on-axis scintillation of an EGB are studied. It is interesting to find that the scintillation index of an EGB can be smaller than that of a circular Gaussian beam in a weakly turbulent atmosphere under certain conditions and is closely related to the ratio of the beam waist size along the long axis to that along the short axis of the EGB, the wavelength, and the structure constant of the turbulent atmosphere.

View Article and Find Full Text PDF

By using the generalized beam formulation, the scintillation index is derived and evaluated for cosh-Gaussian beams in a turbulent atmosphere. Comparisons are made to cos-Gaussian and Gaussian beam scintillations. The variations of scintillations against propagation length at different values of displacement and focusing parameters are examined.

View Article and Find Full Text PDF

Based on the generalized beam formulation, we derive the scintillation index and selectively evaluate it for cos-Gaussian and annular beams propagating in weak atmospheric turbulence. Dependence of the scintillation index on propagation length, focusing and displacement parameters, wavelength of operation, and source size are individually investigated. From our graphical outputs, it is observed that a cos-Gaussian beam exhibits lower scintillations and thus has a tendency to be advantageous over a pure Gaussian beam particularly at lower propagation lengths.

View Article and Find Full Text PDF