IEEE Trans Pattern Anal Mach Intell
February 2021
This paper introduces a family of quasi-linear discriminants that outperform current large-margin methods in sliding window visual object detection and open set recognition tasks. In these applications, the classification problems are both numerically imbalanced - positive (object class) training and test windows are much rarer than negative (non-class) ones - and geometrically asymmetric - the positive samples typically form compact, visually-coherent groups while negatives are much more diverse, including anything at all that is not a well-centered sample from the target class. For such tasks, there is a need for discriminants whose decision regions focus on tightly circumscribing the positive class, while still taking account of negatives in zones where the two classes overlap.
View Article and Find Full Text PDF